scholarly journals Diverse approaches to predicting drug-induced liver injury using gene-expression profiles

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
G. Rex Sumsion ◽  
Michael S. Bradshaw ◽  
Jeremy T. Beales ◽  
Emi Ford ◽  
Griffin R. G. Caryotakis ◽  
...  
2013 ◽  
Vol 137 (1) ◽  
pp. 234-248 ◽  
Author(s):  
Daphna Laifenfeld ◽  
Luping Qiu ◽  
Rachel Swiss ◽  
Jennifer Park ◽  
Michael Macoritto ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Wojciech Lesiński ◽  
Krzysztof Mnich ◽  
Witold R. Rudnicki

Motivation: Drug-induced liver injury (DILI) is one of the primary problems in drug development. Early prediction of DILI, based on the chemical properties of substances and experiments performed on cell lines, would bring a significant reduction in the cost of clinical trials and faster development of drugs. The current study aims to build predictive models of risk of DILI for chemical compounds using multiple sources of information.Methods: Using several supervised machine learning algorithms, we built predictive models for several alternative splits of compounds between DILI and non-DILI classes. To this end, we used chemical properties of the given compounds, their effects on gene expression levels in six human cell lines treated with them, as well as their toxicological profiles. First, we identified the most informative variables in all data sets. Then, these variables were used to build machine learning models. Finally, composite models were built with the Super Learner approach. All modeling was performed using multiple repeats of cross-validation for unbiased and precise estimates of performance.Results: With one exception, gene expression profiles of human cell lines were non-informative and resulted in random models. Toxicological reports were not useful for prediction of DILI. The best results were obtained for models discerning between harmless compounds and those for which any level of DILI was observed (AUC = 0.75). These models were built with Random Forest algorithm that used molecular descriptors.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0141750 ◽  
Author(s):  
Xiaoyan Lu ◽  
Bin Hu ◽  
Jie Zheng ◽  
Cai Ji ◽  
Xiaohui Fan ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shengqiao Gao ◽  
Lu Han ◽  
Dan Luo ◽  
Gang Liu ◽  
Zhiyong Xiao ◽  
...  

Abstract Background Querying drug-induced gene expression profiles with machine learning method is an effective way for revealing drug mechanism of actions (MOAs), which is strongly supported by the growth of large scale and high-throughput gene expression databases. However, due to the lack of code-free and user friendly applications, it is not easy for biologists and pharmacologists to model MOAs with state-of-art deep learning approach. Results In this work, a newly developed online collaborative tool, Genetic profile-activity relationship (GPAR) was built to help modeling and predicting MOAs easily via deep learning. The users can use GPAR to customize their training sets to train self-defined MOA prediction models, to evaluate the model performances and to make further predictions automatically. Cross-validation tests show GPAR outperforms Gene set enrichment analysis in predicting MOAs. Conclusion GPAR can serve as a better approach in MOAs prediction, which may facilitate researchers to generate more reliable MOA hypothesis.


Sign in / Sign up

Export Citation Format

Share Document