scholarly journals Efficient production of d-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Jong Kwan Lee ◽  
Sujin Kim ◽  
Wonsik Kim ◽  
Sungil Kim ◽  
Seungwoo Cha ◽  
...  

Abstract Background Methane, a main component of natural gas and biogas, has gained much attention as an abundant and low-cost carbon source. Methanotrophs, which can use methane as a sole carbon and energy source, are promising hosts to produce value-added chemicals from methane, but their metabolic engineering is still challenging. In previous attempts to produce lactic acid (LA) from methane, LA production levels were limited in part due to LA toxicity. We solved this problem by generating an LA-tolerant strain, which also contributes to understanding novel LA tolerance mechanisms. Results In this study, we engineered a methanotroph strain Methylomonas sp. DH-1 to produce d-lactic acid (d-LA) from methane. LA toxicity is one of the limiting factors for high-level production of LA. Therefore, we first performed adaptive laboratory evolution of Methylomonas sp. DH-1, generating an LA-tolerant strain JHM80. Genome sequencing of JHM80 revealed the causal gene watR, encoding a LysR-type transcription factor, whose overexpression due to a 2-bp (TT) deletion in the promoter region is partly responsible for the LA tolerance of JHM80. Overexpression of the watR gene in wild-type strain also led to an increase in LA tolerance. When d form-specific lactate dehydrogenase gene from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 was introduced into the genome while deleting the glgA gene encoding glycogen synthase, JHM80 produced about 7.5-fold higher level of d-LA from methane than wild type, suggesting that LA tolerance is a critical limiting factor for LA production in this host. d-LA production was further enhanced by optimization of the medium, resulting in a titer of 1.19 g/L and a yield of 0.245 g/g CH4. Conclusions JHM80, an LA-tolerant strain of Methylomonas sp. DH-1, generated by adaptive laboratory evolution was effective in LA production from methane. Characterization of the mutated genes in JHM80 revealed that overexpression of the watR gene, encoding a LysR-type transcription factor, is responsible for LA tolerance. By introducing a heterologous lactate dehydrogenase gene into the genome of JHM80 strain while deleting the glgA gene, high d-LA production titer and yield were achieved from methane.

2019 ◽  
Vol 20 (22) ◽  
pp. 5737 ◽  
Author(s):  
Miriam González-Villanueva ◽  
Hemanshi Galaiya ◽  
Paul Staniland ◽  
Jessica Staniland ◽  
Ian Savill ◽  
...  

Cupriavidus necator H16 is a non-pathogenic Gram-negative betaproteobacterium that can utilize a broad range of renewable heterotrophic resources to produce chemicals ranging from polyhydroxybutyrate (biopolymer) to alcohols, alkanes, and alkenes. However, C. necator H16 utilizes carbon sources to different efficiency, for example its growth in glycerol is 11.4 times slower than a favorable substrate like gluconate. This work used adaptive laboratory evolution to enhance the glycerol assimilation in C. necator H16 and identified a variant (v6C6) that can co-utilize gluconate and glycerol. The v6C6 variant has a specific growth rate in glycerol 9.5 times faster than the wild-type strain and grows faster in mixed gluconate–glycerol carbon sources compared to gluconate alone. It also accumulated more PHB when cultivated in glycerol medium compared to gluconate medium while the inverse is true for the wild-type strain. Through genome sequencing and expression studies, glycerol kinase was identified as the key enzyme for its improved glycerol utilization. The superior performance of v6C6 in assimilating pure glycerol was extended to crude glycerol (sweetwater) from an industrial fat splitting process. These results highlight the robustness of adaptive laboratory evolution for strain engineering and the versatility and potential of C. necator H16 for industrial waste glycerol valorization.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 30
Author(s):  
Jia Wang ◽  
Yuxin Wang ◽  
Yijian Wu ◽  
Yuwei Fan ◽  
Changliang Zhu ◽  
...  

Adaptive laboratory evolution (ALE) has been widely utilized as a tool for developing new biological and phenotypic functions to explore strain improvement for microalgal production. Specifically, ALE has been utilized to evolve strains to better adapt to defined conditions. It has become a new solution to improve the performance of strains in microalgae biotechnology. This review mainly summarizes the key results from recent microalgal ALE studies in industrial production. ALE designed for improving cell growth rate, product yield, environmental tolerance and wastewater treatment is discussed to exploit microalgae in various applications. Further development of ALE is proposed, to provide theoretical support for producing the high value-added products from microalgal production.


2009 ◽  
Vol 75 (15) ◽  
pp. 5175-5178 ◽  
Author(s):  
Kenji Okano ◽  
Shogo Yoshida ◽  
Tsutomu Tanaka ◽  
Chiaki Ogino ◽  
Hideki Fukuda ◽  
...  

ABSTRACT Optically pure d-lactic acid fermentation from arabinose was achieved by using the Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase gene was substituted with a heterologous transketolase gene. After 27 h of fermentation, 38.6 g/liter of d-lactic acid was produced from 50 g/liter of arabinose.


2015 ◽  
Vol 25 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Dai-Joong Kim ◽  
Gui-Hye Hwang ◽  
Ji-Na Um ◽  
Jae-Yong Cho

Overexpression of the NCgl0462 open reading frame, encoding a class II aminotransferase, was studied in conjunction with other enzymes in <smlcap>L</smlcap>-ornithine biosynthesis in an <smlcap>L</smlcap>-ornithine-producing strain. Expression of the wild-type NCgl0462 open reading frame, which displayed aminotransferase activity, was amplified by placing it under the control of the glyceraldehyde 3-phosphate dehydrogenase gene promoter in the pEK0 plasmid and in the genome. <smlcap>L</smlcap>-Ornithine production in <i>Corynebacterium</i><i>glutamicum</i> SJC8260 harboring plasmid and the genomic NCgl0462 open reading frame was increased by 8.8 and 21.6%, respectively. In addition, the combined overexpression of the NCgl0462 open reading frame within the genome along with the mutated <smlcap>L</smlcap>-ornithine biosynthesis genes <i>(argCJBD)</i> placed in the pEK0 plasmid in <i>C</i>. <i>glutamicum</i> SJC8260 resulted in significant improvement in <smlcap>L</smlcap>-ornithine production (12.48 g/l for combined overexpression compared with 8.42 g/l for the control). These results suggest that overexpression of the aminotransferase-encoding NCgl0462 open reading frame plays an unequivocal role in the <smlcap>L</smlcap>-ornithine biosynthetic pathway, with overlapping substrate specificity in <i>C</i>. <i>glutamicum</i>.


2002 ◽  
Vol 68 (11) ◽  
pp. 5663-5670 ◽  
Author(s):  
Peter A. Bron ◽  
Marcos G. Benchimol ◽  
Jolanda Lambert ◽  
Emmanuelle Palumbo ◽  
Marie Deghorain ◽  
...  

ABSTRACT Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of d-alanine and l-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Δalr) showed auxotrophy for d-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented d-alanine auxotrophy in the L. plantarum Δalr and L. lactis Δalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to d-cycloserine, a competitive inhibitor of Alr (600 and 200 μg/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that d-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Δalr. The resulting strain could grow in the absence of d-alanine only when expression of the alr gene was induced with nisin.


2018 ◽  
Author(s):  
Jin Luo ◽  
Tapio Lehtinen ◽  
Elena Efimova ◽  
Ville Santala ◽  
Suvi Santala

AbstractIntegration of synthetic metabolic pathways to catabolically diverse chassis provides new opportunities for sustainable production. One attractive scenario is the use of abundant waste material to produce readily collectable product, minimizing production costs. Towards that end, we established the production of semivolatile medium-chain α-olefins from lignin-derived monomers: we constructed 1-undecene synthesis pathway inAcinetobacter baylyiADP1 using ferulate as the sole carbon source. In order to overcome the toxicity of ferulate, we first applied adaptive laboratory evolution, resulting in a highly ferulate-tolerant strain. Next, we demonstrated the 1-undecene production from glucose by heterologously expressing a fatty acid decarboxylase UndA and a thioesterase ‘TesA in the wild type strain. Finally, we constructed the alkene synthesis pathway in the ferulate-tolerant strain. We were able to produce 1-undecene from ferulate and collect the product from the culture headspace without downstream processing. This study demonstrates the potential of bacterial lignin upgradation into value-added products.


2005 ◽  
Vol 71 (4) ◽  
pp. 1964-1970 ◽  
Author(s):  
Nobuhiro Ishida ◽  
Satoshi Saitoh ◽  
Kenro Tokuhiro ◽  
Eiji Nagamori ◽  
Takashi Matsuyama ◽  
...  

ABSTRACT We developed a metabolically engineered yeast which produces lactic acid efficiently. In this recombinant strain, the coding region for pyruvate decarboxylase 1 (PDC1) on chromosome XII is substituted for that of the l-lactate dehydrogenase gene (LDH) through homologous recombination. The expression of mRNA for the genome-integrated LDH is regulated under the control of the native PDC1 promoter, while PDC1 is completely disrupted. Using this method, we constructed a diploid yeast transformant, with each haploid genome having a single insertion of bovine LDH. Yeast cells expressing LDH were observed to convert glucose to both lactate (55.6 g/liter) and ethanol (16.9 g/liter), with up to 62.2% of the glucose being transformed into lactic acid under neutralizing conditions. This transgenic strain, which expresses bovine LDH under the control of the PDC1 promoter, also showed high lactic acid production (50.2 g/liter) under nonneutralizing conditions. The differences in lactic acid production were compared among four different recombinants expressing a heterologous LDH gene (i.e., either the bovine LDH gene or the Bifidobacterium longum LDH gene): two transgenic strains with 2μm plasmid-based vectors and two genome-integrated strains.


2008 ◽  
Vol 75 (2) ◽  
pp. 462-467 ◽  
Author(s):  
Kenji Okano ◽  
Qiao Zhang ◽  
Satoru Shinkawa ◽  
Shogo Yoshida ◽  
Tsutomu Tanaka ◽  
...  

ABSTRACT In order to achieve direct and efficient fermentation of optically pure d-lactic acid from raw corn starch, we constructed l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 α-amylase (AmyA). The resulting strain produced only d-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct d-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct d-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct d-lactic acid fermentation from raw starch.


Sign in / Sign up

Export Citation Format

Share Document