scholarly journals Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei-Chen Lin ◽  
Chia-Yun Tsai ◽  
Jian-Ming Huang ◽  
Shang-Rung Wu ◽  
Lichieh Julie Chu ◽  
...  

Abstract Background Pathogenic protozoans use extracellular vesicles (EVs) for intercellular communication and host manipulation. Acanthamoeba castellanii is a free-living protozoan that may cause severe keratitis and fatal granulomatous encephalitis. Although several secreted molecules have been shown to play crucial roles in the pathogenesis of Acanthamoeba, the functions and components of parasite-derived EVs are far from understood. Methods Purified EVs from A. castellanii were confirmed by electron microscopy and nanoparticle tracking analysis. The functional roles of parasite-derived EVs in the cytotoxicity to and immune response of host cells were examined. The protein composition in EVs from A. castellanii was identified and quantified by LC-MS/MS analysis. Results EVs from A. castellanii fused with rat glioma C6 cells. The parasite-derived EVs induced an immune response from human THP-1 cells and a cytotoxic effect in C6 cells. Quantitative proteomic analysis identified a total of 130 proteins in EVs. Among the identified proteins, hydrolases (50.2%) and oxidoreductases (31.7%) were the largest protein families in EVs. Furthermore, aminopeptidase activities were confirmed in EVs from A. castellanii. Conclusions The proteomic profiling and functional characterization of EVs from A. castellanii provide an in-depth understanding of the molecules packaged into EVs and their potential mechanisms mediating the pathogenesis of this parasite.

2015 ◽  
Vol 14 (8) ◽  
pp. 3292-3304 ◽  
Author(s):  
Ningning Liu ◽  
Yun Xiong ◽  
Yiran Ren ◽  
Linlin Zhang ◽  
Xianfei He ◽  
...  

2008 ◽  
Vol 7 (6) ◽  
pp. 1062-1070 ◽  
Author(s):  
Kirsten Heiss ◽  
Hui Nie ◽  
Sumit Kumar ◽  
Thomas M. Daly ◽  
Lawrence W. Bergman ◽  
...  

ABSTRACT Efficient and specific host cell entry is of exquisite importance for intracellular pathogens. Parasites of the phylum Apicomplexa are highly motile and actively enter host cells. These functions are mediated by type I transmembrane invasins of the TRAP family that link an extracellular recognition event to the parasite actin-myosin motor machinery. We systematically tested potential parasite invasins for binding to the actin bridging molecule aldolase and complementation of the vital cytoplasmic domain of the sporozoite invasin TRAP. We show that the ookinete invasin CTRP and a novel, structurally related protein, termed TRAP-like protein (TLP), are functional members of the TRAP family. Although TLP is expressed in invasive stages, targeted gene disruption revealed a nonvital role during life cycle progression. This is the first genetic analysis of TLP, encoding a redundant TRAP family invasin, in the malaria parasite.


2018 ◽  
Author(s):  
Maria R. Handrich ◽  
Sriram G. Garg ◽  
Ewen W. Sommerville ◽  
Robert P. Hirt ◽  
Sven B. Gould

AbstractTrichomonas vaginalisis one of the most widespread, sexually transmitted pathogens. The infection involves a morphological switch from a free-swimming pyriform trophozoite to an amoeboid cell upon adhesion to host epithelial cells. While details on how the switch is induced and to what proteins of the host surface the parasite adheres remain poorly characterized, several surface proteins of the parasite itself have been identified as potential candidates. Among those are two expanded protein families that harbor domains that share similarity to functionally investigated surface proteins of prokaryotic oral pathogens; these are the BspA proteins of Bacteroidales and Spirochaetales, and the Pmp proteins of Chlamydiales. We sequenced the transcriptomes of five Trichomonads and screened for the presence of BspA and Pmp domain-containing proteins and tested the ability of individualT. vaginaliscandidates to mediate adhesion. Here we demonstrate that (i) BspA and Pmp domain-containing proteins are specifically expanded inT. vaginalisin comparison to other Trichomonads, and that (ii) individual proteins of both families have the ability to increase adhesion performance in a non-virulentT. vaginalisstrain andTetratrichomonas gallinarum, a parasite usually known to infect birds but not humans. Our results initiate the functional characterization of these two broadly distributed protein families, whose origin we trace back to the origin of Trichomonads themselves.


2022 ◽  
Vol 127 ◽  
pp. 104293
Author(s):  
Zishu Huang ◽  
Yueling Zhang ◽  
Xiaoyu Zheng ◽  
Zhuoyan Liu ◽  
Defu Yao ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6152 ◽  
Author(s):  
Katarzyna Kosznik-Kwaśnicka ◽  
Karolina Ciemińska ◽  
Michał Grabski ◽  
Łukasz Grabowski ◽  
Marcin Górniak ◽  
...  

Molecular and functional characterization of a series of three bacteriophages, vB_SenM-1, vB_SenM-2, and vB_SenS-3, infecting various Salmonella enterica serovars and strains is presented. All these phages were able to develop lytically while not forming prophages. Moreover, they were able to survive at pH 3. The phages revealed different host ranges within serovars and strains of S. enterica, different adsorption rates on host cells, and different lytic growth kinetics at various temperatures (in the range of 25 to 42 °C). They efficiently reduced the number of cells in the bacterial biofilm and decreased the biofilm mass. Whole genome sequences of these phages have been determined and analyzed, including their phylogenetic relationships. In conclusion, we have demonstrated detailed characterization of a series of three bacteriophages, vB_SenM-1, vB_SenM-2, and vB_SenS-3, which reveal favorable features in light of their potential use in phage therapy of humans and animals, as well as for food protection purposes.


2012 ◽  
Vol 189 (2) ◽  
pp. 935-945 ◽  
Author(s):  
Larissa N. A. Longhi ◽  
Rosiane M. da Silva ◽  
Márcia C. Fornazim ◽  
Maria C. Spago ◽  
Rômulo T. D. de Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document