scholarly journals Patterns of spatial genetic structures in Aedes albopictus (Diptera: Culicidae) populations in China

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yong Wei ◽  
Jiatian Wang ◽  
Zhangyao Song ◽  
Yulan He ◽  
Zihao Zheng ◽  
...  

Abstract Background The Asian tiger mosquito, Aedes albopictus, is one of the 100 worst invasive species in the world and the vector for several arboviruses including dengue, Zika and chikungunya viruses. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. Little is known about the population structure and genetic differentiation of native Ae. albopictus in China. The aim of this study was to examine the patterns of the spatial genetic structures of native Ae. albopictus populations, and their relationship to dengue incidence, on a large geographical scale. Methods During 2016–2018, adult female Ae. albopictus mosquitoes were collected by human landing catch (HLC) or human-bait sweep-net collections in 34 localities across China. Thirteen microsatellite markers were used to examine the patterns of genetic diversity, population structure, and gene flow among native Ae. albopictus populations. The correlation between population genetic indices and dengue incidence was also examined. Results A total of 153 distinct alleles were identified at the 13 microsatellite loci in the tested populations. All loci were polymorphic, with the number of distinct alleles ranging from eight to sixteen. Genetic parameters such as PIC, heterozygosity, allelic richness and fixation index (FST) revealed highly polymorphic markers, high genetic diversity, and low population genetic differentiation. In addition, Bayesian analysis of population structure showed two distinct genetic groups in southern-western and eastern-central-northern China. The Mantel test indicated a positive correlation between genetic distance and geographical distance (R2 = 0.245, P = 0.01). STRUCTURE analysis, PCoA and GLS interpolation analysis indicated that Ae. albopictus populations in China were regionally clustered. Gene flow and relatedness estimates were generally high between populations. We observed no correlation between population genetic indices of microsatellite loci in Ae. albopictus populations and dengue incidence. Conclusion Strong gene flow probably assisted by human activities inhibited population differentiation and promoted genetic diversity among populations of Ae. albopictus. This may represent a potential risk of rapid spread of mosquito-borne diseases. The spatial genetic structure, coupled with the association between genetic indices and dengue incidence, may have important implications for understanding the epidemiology, prevention, and control of vector-borne diseases.

2020 ◽  
Vol 16 (5) ◽  
Author(s):  
Pekka Vakkari ◽  
Mari Rusanen ◽  
Juha Heikkinen ◽  
Tea Huotari ◽  
Katri Kärkkäinen

Abstract The genetic structure of populations at the edge of species distribution is important for species adaptation to environmental changes. Small populations may experience non-random mating and differentiation due to genetic drift but larger populations, too, may have low effective size, e.g., due to the within-population structure. We studied spatial population structure of pedunculate oak, Quercus robur, at the northern edge of the species’ global distribution, where oak populations are experiencing rapid climatic and anthropogenic changes. Using 12 microsatellite markers, we analyzed genetic differentiation of seven small to medium size populations (census sizes 57–305 reproducing trees) and four populations for within-population genetic structures. Genetic differentiation among seven populations was low (Fst = 0.07). We found a strong spatial genetic structure in each of the four populations. Spatial autocorrelation was significant in all populations and its intensity (Sp) was higher than those reported in more southern oak populations. Significant genetic patchiness was revealed by Bayesian structuring and a high amount of spatially aggregated full and half sibs was detected by sibship reconstruction. Meta-analysis of isoenzyme and SSR data extracted from the (GD)2 database suggested northwards decreasing trend in the expected heterozygosity and an effective number of alleles, thus supporting the central-marginal hypothesis in oak populations. We suggest that the fragmented distribution and location of Finnish pedunculate oak populations at the species’ northern margin facilitate the formation of within-population genetic structures. Information on the existence of spatial genetic structures can help conservation managers to design gene conservation activities and to avoid too strong family structures in the sampling of seeds and cuttings for afforestation and tree improvement purposes.


1999 ◽  
Vol 29 (9) ◽  
pp. 1311-1316 ◽  
Author(s):  
Man Kyu Huh

The genetic diversity and population genetic structure of Alnus japonica (Thunb.) Steudel in Korea were studied and compared with those of alder from Canada. Nineteen of the 25 loci studied (76.0%) showed detectable polymorphism. The mean genetic diversity within populations was 0.207, which was higher than that for two Canadian alder species (Alnus rugosa (Du Roi) Spreng. and Alnus crispa (Ait.) Pursh). Analysis of fixation indices, calculated for all polymorphic loci in each population, showed a substantial deficiency of heterozygotes relative to Hardy-Weinberg expectations. The mean population differentiation value of A. japonica in Korea (GST = 0.095) is similar to those of A. rugosa in Canada (GST = 0.052). These low values of GST in two countries, reflecting little spatial genetic differentiation, may indicate extensive gene flow (via pollen and (or) seeds) and (or) recent colonization.


2012 ◽  
Vol 93 (6) ◽  
pp. 1512-1524 ◽  
Author(s):  
Sarah A. Sonsthagen ◽  
Chadwick V. Jay ◽  
Anthony S. Fischbach ◽  
George K. Sage ◽  
Sandra L. Talbot

Abstract Pacific walruses (Odobenus rosmarus divergens) occupying shelf waters of Pacific Arctic seas migrate during spring and summer from 3 breeding areas in the Bering Sea to form sexually segregated nonbreeding aggregations. We assessed genetic relationships among 2 putative breeding populations and 6 nonbreeding aggregations. Analyses of mitochondrial DNA (mtDNA) control region sequence data suggest that males are distinct among breeding populations (ΦST = 0.051), and between the eastern Chukchi and other nonbreeding aggregations (ΦST = 0.336–0.449). Nonbreeding female aggregations were genetically distinct across marker types (microsatellite FST = 0.019; mtDNA ΦST = 0.313), as was eastern Chukchi and all other nonbreeding aggregations (microsatellite FST = 0.019–0.035; mtDNA ΦST = 0.386–0.389). Gene flow estimates are asymmetrical from St. Lawrence Island into the southeastern Bering breeding population for both sexes. Partitioning of haplotype frequencies among breeding populations suggests that individuals exhibit some degree of philopatry, although weak. High levels of genetic differentiation among eastern Chukchi and all other nonbreeding aggregations, but considerably lower genetic differentiation between breeding populations, suggest that at least 1 genetically distinct breeding population remained unsampled. Limited genetic structure at microsatellite loci between assayed breeding areas can emerge from several processes, including male-mediated gene flow, or population admixture following a decrease in census size (i.e., due to commercial harvest during 1880–1950s) and subsequent recovery. Nevertheless, high levels of genetic diversity in the Pacific walrus, which withstood prolonged decreases in census numbers with little impact on neutral genetic diversity, may reflect resiliency in the face of past environmental challenges.


2017 ◽  
Vol 29 (6) ◽  
pp. 499-510 ◽  
Author(s):  
Kristen B. Gorman ◽  
Sandra L. Talbot ◽  
Sarah A. Sonsthagen ◽  
George K. Sage ◽  
Meg C. Gravely ◽  
...  

AbstractAdélie penguins (Pygoscelis adeliae) are responding to ocean–climate variability throughout the marine ecosystem of the western Antarctic Peninsula (WAP) where some breeding colonies have declined by 80%. Nuclear and mitochondrial DNA (mtDNA) markers were used to understand historical population genetic structure and gene flow given relatively recent and continuing reductions in sea ice habitats and changes in numbers of breeding adults at colonies throughout the WAP. Genetic diversity, spatial genetic structure, genetic signatures of fluctuations in population demography and gene flow were assessed in four regional Adélie penguin colonies. The analyses indicated little genetic structure overall based on bi-parentally inherited microsatellite markers (FST=-0.006–0.004). No significant variance was observed in overall haplotype frequency (mtDNAΦST=0.017;P=0.112). Some comparisons with Charcot Island were significant, suggestive of female-biased philopatry. Estimates of gene flow based on a two-population coalescent model were asymmetrical from the species’ regional core to its northern range. Breeding Adélie penguins of the WAP are a panmictic population and hold adequate genetic diversity and dispersal capacity to be resilient to environmental change.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240743
Author(s):  
Maurice Marcel Sandeu ◽  
Charles Mulamba ◽  
Gareth D. Weedall ◽  
Charles S. Wondji

Background Insecticide resistance is challenging the effectiveness of insecticide-based control interventions to reduce malaria burden in Africa. Understanding the molecular basis of insecticides resistance and patterns of gene flow in major malaria vectors such as Anopheles funestus are important steps for designing effective resistance management strategies. Here, we investigated the association between patterns of genetic structure and expression profiles of genes involved in the pyrethroid resistance in An. funestus across Uganda and neighboring Kenya. Methods Blood-fed mosquitoes An. funestus were collected across the four localities in Uganda and neighboring Kenya. A Microarray-based genome-wide transcription analysis was performed to identify the set of genes associated with permethrin resistance. 17 microsatellites markers were genotyped and used to establish patterns of genetic differentiation. Results Microarray-based genome-wide transcription profiling of pyrethroid resistance in four locations across Uganda (Arua, Bulambuli, Lira, and Tororo) and Kenya (Kisumu) revealed that resistance was mainly driven by metabolic resistance. The most commonly up-regulated genes in pyrethroid resistance mosquitoes include cytochrome P450s (CYP9K1, CYP6M7, CYP4H18, CYP4H17, CYP4C36). However, expression levels of key genes vary geographically such as the P450 CYP6M7 [Fold-change (FC) = 115.8 (Arua) vs 24.05 (Tororo) and 16.9 (Kisumu)]. In addition, several genes from other families were also over-expressed including Glutathione S-transferases (GSTs), carboxylesterases, trypsin, glycogenin, and nucleotide binding protein which probably contribute to insecticide resistance across Uganda and Kenya. Genotyping of 17 microsatellite loci in the five locations provided evidence that a geographical shift in the resistance mechanisms could be associated with patterns of population structure throughout East Africa. Genetic and population structure analyses indicated significant genetic differentiation between Arua and other localities (FST>0.03) and revealed a barrier to gene flow between Arua and other areas, possibly associated with Rift Valley. Conclusion The correlation between patterns of genetic structure and variation in gene expression could be used to inform future interventions especially as new insecticides are gradually introduced.


Parasitology ◽  
2013 ◽  
Vol 140 (9) ◽  
pp. 1061-1069 ◽  
Author(s):  
IRIS I. LEVIN ◽  
PATRICIA G. PARKER

SUMMARYParasites often have shorter generation times and, in some cases, faster mutation rates than their hosts, which can lead to greater population differentiation in the parasite relative to the host. Here we present a population genetic study of two ectoparasitic flies, Olfersia spinifera and Olfersia aenescens compared with their respective bird hosts, great frigatebirds (Fregata minor) and Nazca boobies (Sula granti). Olfersia spinifera is the vector of a haemosporidian parasite, Haemoproteus iwa, which infects frigatebirds throughout their range. Interestingly, there is no genetic differentiation in the haemosporidian parasite across this range despite strong genetic differentiation between Galapagos frigatebirds and their non-Galapagos conspecifics. It is possible that the broad distribution of this one H. iwa lineage could be facilitated by movement of infected O. spinifera. Therefore, we predicted more gene flow in both fly species compared with the bird hosts. Mitochondrial DNA sequence data from three genes per species indicated that despite marked differences in the genetic structure of the bird hosts, gene flow was very high in both fly species. A likely explanation involves non-breeding movements of hosts, including movement of juveniles, and movement by adult birds whose breeding attempt has failed, although we cannot rule out the possibility that closely related host species may be involved.


Diversity ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 135 ◽  
Author(s):  
Jingxue Zhang ◽  
Miaoli Wang ◽  
Zhipeng Guo ◽  
Yongzhuo Guan ◽  
Jianyu Liu ◽  
...  

Understanding the population genetic pattern and process of gene flow requires a detailed knowledge of how landscape characteristics structure populations. Although Cynodon dactylon (L.) Pers. (common bermudagrass) is widely distributed in the world, information on its genetic pattern and population structure along latitudinal gradients is limited. We tried to estimate the genetic diversity and genetic structure of C. dactylon along a latitudinal gradient across China. Genetic diversity among different ploidy levels was also compared in the study. The material used consisted of 296 C. dactylon individuals sampled from 16 geographic sites from 22°35′ N to 36°18′ N. Genetic diversity was estimated using 153 expressed sequence tag-derived simple sequence repeat (EST-SSR) loci. Higher within-population genetic diversity appeared at low-latitude, as well as having positive correlation with temperature and precipitation. The genetic diversity increased with the ploidy level of C. dactylon, suggesting polyploidy creates higher genetic diversity. No isolation by distance and notable admixture structure existed among populations along latitudes. Both seed dispersal (or vegetative organs) and extrinsic pollen played important roles for gene flow in shaping the spatial admixture population structure of C. dactylon along latitudes. In addition, populations were separated into three clusters according to ploidy levels. C. dactylon has many such biological characters of perennial growth, wind-pollination, polyploidy, low genetic differentiation among populations, sexual and asexual reproduction leading to higher genetic diversity, which gives it strong adaptability with its genetic patterns being very complex across all the sampled latitudes. The findings of this study are related to landscape population evolution, polyploidy speciation, preservation, and use of bermudagrass breeding.


Heredity ◽  
2020 ◽  
Vol 126 (1) ◽  
pp. 63-76
Author(s):  
Sarah M. Griffiths ◽  
Mark J. Butler ◽  
Donald C. Behringer ◽  
Thierry Pérez ◽  
Richard F. Preziosi

AbstractUnderstanding population genetic structure can help us to infer dispersal patterns, predict population resilience and design effective management strategies. For sessile species with limited dispersal, this is especially pertinent because genetic diversity and connectivity are key aspects of their resilience to environmental stressors. Here, we describe the population structure of Ircinia campana, a common Caribbean sponge subject to mass mortalities and disease. Microsatellites were used to genotype 440 individuals from 19 sites throughout the Greater Caribbean. We found strong genetic structure across the region, and significant isolation by distance across the Lesser Antilles, highlighting the influence of limited larval dispersal. We also observed spatial genetic structure patterns congruent with oceanography. This includes evidence of connectivity between sponges in the Florida Keys and the southeast coast of the United States (>700 km away) where the oceanographic environment is dominated by the strong Florida Current. Conversely, the population in southern Belize was strongly differentiated from all other sites, consistent with the presence of dispersal-limiting oceanographic features, including the Gulf of Honduras gyre. At smaller spatial scales (<100 km), sites showed heterogeneous patterns of low-level but significant genetic differentiation (chaotic genetic patchiness), indicative of temporal variability in recruitment or local selective pressures. Genetic diversity was similar across sites, but there was evidence of a genetic bottleneck at one site in Florida where past mass mortalities have occurred. These findings underscore the relationship between regional oceanography and weak larval dispersal in explaining population genetic patterns, and could inform conservation management of the species.


2014 ◽  
Vol 51 (4) ◽  
pp. 309-317 ◽  
Author(s):  
O. Zhigileva ◽  
V. Ozhireľev ◽  
T. Stepanova ◽  
T. Moiseenko

AbstractGenetic variability of West Siberian populations of Opisthorchis felineus and two species of cyprinid fish, its second intermediate hosts, was studied by isozyme analysis. Low levels of allozyme variation and genetic differentiation in O. felineus from the Ob-Irtysh focus of opisthorchiasis were detected. The proportion of polymorphic loci was 21.1 %, the average observed heterozygosity (Hobs) was 0.008, and expected heterozygosity (Hexp) was 0.052. For most loci in O. felineus deficit of heterozygotes (FIS = 0.7424) was observed. A comparison of population genetic structure of fish and parasites showed they were not congruent. Estimates of genetic differentiation of the parasite were smaller than for the fish — its intermediate host. Migration and population structure of the second intermediate hosts do not play an important role in formation of the population-genetic structure of O. felineus in the Ob-Irtysh focus of opisthorchiasis.


2015 ◽  
Vol 282 (1812) ◽  
pp. 20151217 ◽  
Author(s):  
Luke Thomas ◽  
W. Jason Kennington ◽  
Michael Stat ◽  
Shaun P. Wilkinson ◽  
Johnathan T. Kool ◽  
...  

A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve our understanding of forces driving genetic divergence in the marine environment. Information about barriers to gene flow (such as ocean currents) is used to define a resistance surface to predict the spatial genetic structure of populations and explain deviations from the widely applied isolation-by-distance model. The majority of seascape approaches to date have been applied to linear coastal systems or at large spatial scales (more than 250 km), with very few applied to complex systems at regional spatial scales (less than 100 km). Here, we apply a seascape genetics approach to a peripheral population of the broadcast-spawning coral Acropora spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral reef system off the central coast of Western Australia. We coupled population genetic data from a panel of microsatellite DNA markers with a biophysical dispersal model to test whether oceanographic processes could explain patterns of genetic divergence. We identified significant variation in allele frequencies over distances of less than 10 km, with significant differentiation occurring between adjacent sites but not between the most geographically distant ones. Recruitment probabilities between sites based on simulated larval dispersal were projected into a measure of resistance to connectivity that was significantly correlated with patterns of genetic divergence, demonstrating that patterns of spatial genetic structure are a function of restrictions to gene flow imposed by oceanographic currents. This study advances our understanding of the role of larval dispersal on the fine-scale genetic structure of coral populations across a complex island system and applies a methodological framework that can be tailored to suit a variety of marine organisms with a range of life-history characteristics.


Sign in / Sign up

Export Citation Format

Share Document