scholarly journals Using the co-expression network of T cell-activation-related genes to assess the disease activity in Takayasu’s arteritis patients

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Yixiao Tian ◽  
Jing Li ◽  
Xinping Tian ◽  
Xiaofeng Zeng

Abstract Background There have been lacking reliable serum biomarkers in assessing the disease activity of Takayasu’s arteritis (TAK). This study aimed to assess the disease activity of TAK by assayed gene expression levels in peripheral mononuclear cells (PBMCs). Methods The expression level of genes that essential in T cell activation in PBMCs in active TAK patients, inactive TAK patients, and healthy controls were detected by real-time fluorescence quantitative polymerase chain reaction, including TCR, CD28, CD40, CD40L, PD-1, PD-L1, PD-L2, CTLA4, TIGIT, TIM3, LAG3, CCL5, T-bet, RORC, and FOXP3. Gene co-expression network was established, and the signature of the topology structure in active TAK patients compared to the inactive TAK patients were extracted and described by formulas. Respectively, the disease activity was assessed by the routine serum biomarkers, including ESR, CRP, IL-6, and TNF-α, the gene expression level of TCR, CD28, T-bet, and RORC, as well as the signature of the topology structure, and the diagnostic efficacies were compared. Results Compared with the inactive TAK patient group, the active TAK patient group had a greater clustering coefficient in the network consisting of genes that essential in T cell activation. When assessing the disease activity used this signature of topology structure, the sensitivity was 90.9%, the specificity was 100%, and the AUC was 0.98, which was greater than the AUCs of these biomarkers. Conclusions The signature of the topology structure could distinguish the active TAK patients from inactive TAK patients. This maybe is a novel evaluation algorithm of disease activity.

2009 ◽  
Vol 131 ◽  
pp. S70
Author(s):  
Finn Sellebjerg ◽  
Martin Krakauer ◽  
Dan Hesse ◽  
Henrik Lund ◽  
Signe Limborg ◽  
...  

2021 ◽  
Author(s):  
Morteza Aramesh ◽  
Diana Stoycheva ◽  
Ioana Sandu ◽  
Stephan J. Ihle ◽  
Tamara Zund ◽  
...  

T cells sense and respond to their local environment at the nanoscale by forming small actin-rich protrusions, called microvilli, which play critical roles in signaling and antigen recognition, particularly at the interface with the antigen presenting cells. However, the mechanisms by which microvilli contribute to cell signaling and activation is largely unknown. Here, we present a tunable engineered system that promotes microvilli formation and T cell signaling via physical stimuli. We discovered that nanoporous surfaces favored microvilli formation, and markedly altered gene expression in T cells and promoted their activation. Mechanistically, confinement of microvilli inside of nanopores leads to size-dependent sorting of membrane-anchored proteins, specifically segregating CD45 phosphatases and T cell receptors (TCR) from the tip of the protrusions when microvilli are confined in 200 nm pores, but not in 400 nm pores. Consequently, formation of TCR nanoclustered hotspots within 200 nm pores, allows sustained and augmented signaling that prompts T cell activation even in the absence of TCR agonists. The synergistic combination of mechanical and biochemical signals on porous surfaces presents a straightforward strategy to investigate the role of microvilli in T cell signaling as well as to boost T cell activation and expansion for application in the growing field of adoptive immunotherapy.


1987 ◽  
Vol 166 (3) ◽  
pp. 810-815 ◽  
Author(s):  
Y Kaufmann ◽  
T Silverman ◽  
B Z Levi ◽  
K Ozato

Expression of cellular oncogenes was studied in a T cell hybridoma that undergoes cytolytic activation when stimulated by specific antigen or by anti-Thy-1 antibody. The activation occurs without induction of hybridoma proliferation, providing a model to examine oncogene expression during functional differentiation of lymphocytes. We found that c-fos and c-ets-1 mRNAs were transiently induced at high levels in the hybridoma 30 min and 4 h after stimulation, respectively. c-myc and c-ets-2 oncogenes were constitutively expressed in the hybridoma and their mRNA levels were unaffected during 4 h of stimulation, although c-myc expression was reduced in the later stage of stimulation. Inhibitors of T cell activation, cyclosporin A and anti-LFA-1 antibody, blocked the induction of c-fos and c-ets-1 mRNAs without reducing the levels of c-myc and c-ets-2. The results indicate that the functional activation of the CTL hybridoma is associated with induction of c-fos and c-ets-1 genes.


2006 ◽  
Vol 290 (1) ◽  
pp. L66-L74 ◽  
Author(s):  
Joshua Rubenfeld ◽  
Jia Guo ◽  
Nitat Sookrung ◽  
Rongbing Chen ◽  
Wanpen Chaicumpa ◽  
...  

Lysophosphatidic acid (LPA) is a membrane-derived lysophospholipid with wide-ranging effects on multiple lung cells including airway epithelial and smooth muscle cells. LPA can augment migration and cytokine synthesis in lymphocytes, but its potential effects on Th2 cytokines have not been well studied. We examined the effects of physiological concentrations of LPA on IL-13 gene expression in human T cells. The Jurkat T cell line and human peripheral blood CD4+ T cells were incubated with LPA alone or with 1) pharmacological agonists of different signaling pathways, or 2) antibodies directed against the T cell receptor complex and costimulatory molecules. Luciferase-based reporter constructs driven by different lengths of the human IL-13 promoter were transfected by electroporation in Jurkat cells treated with and without LPA. The effects of LPA on IL-13 mRNA stability were examined using actinomycin D to halt ongoing transcription. Expression of mRNA encoding LPA2and LPP-1 increased with T cell activation. LPA augmented IL-13 secretion under conditions of submaximal T cell activation. This was observed using pharmacological agonists activating intracellular calcium-, PKC-, and cAMP-dependent signaling pathways, as well as antibodies directed against CD3 and CD28. LPA only slightly prolonged IL-13 mRNA half-life in submaximally stimulated Jurkat cells. In contrast, LPA significantly enhanced transcriptional activation of the IL-13 promoter via regulatory elements contained within proximal 312 bp. The effects of LPA on IL-13 promoter activation appeared to be distinct from those mediated by GATA-3. LPA can augment IL-13 gene expression in T cells, especially under conditions of submaximal activation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2898-2898
Author(s):  
Michael Lübbert ◽  
Michael Stock ◽  
Tobias Berg ◽  
Manfred Fliegauf

Abstract The chromosomal translocation (8;21) fuses the AML1 gene on chromosome 21 and the ETO gene on chromosome 8 in human acute myeloid leukemias, resulting in expression of the chimeric transcription factor AML1/ETO. AML1/ETO-mediated dysregulation of target genes critical for hematopoietic differentiation and proliferation is thought to contribute to the leukemic phenotype. Several mechanisms, including recruitment of histone deacetylases (HDACs) to AML1 target genes, may be responsible for altered gene expression. We used an ecdysone-inducible expression system in the human monoblastic U-937 cell line to isolate genes that were differentially expressed upon induction of AML1/ETO expression. By representational difference analysis (cDNA-RDA), we identified 26 genes whose expression levels were significantly modulated following AML1/ETO induction for 48 hours. None of these genes has previously been described as a target of AML1, ETO or AML1/ETO. One gene down-regulated by AML1/ETO in vitro, Williams Beuren Syndrome critical region 5 (WBSCR5), was expressed in primary t(8;21) negative AML blasts but not in primary t(8;21) positive AML blasts, strongly implying a role of this gene in the phenotype of t(8;21) positive AML. WBSCR5 is part of the critical region located on chromosome 7q11.23 that is deleted in the Williams Beuren syndrome (OMIM 194050), an autosomal dominant disorder comprising vascular, neurological, behavioral and skeletal abnormalities. WBSCR5 has recently been shown to have a role in the activation and differentiation of B cells (Brdicka et al., J. Exp. Med. 196:1617, 2002) and thus was also termed Non-T cell activation linker.. WBSCR5 as well as seven other regulated genes were further studied using all-trans-retinoic acid (ATRA), an inducer of differentiation of U-937 cells, and Trichostatin A (TSA), an HDAC inhibitor. WBSCR5 and two other out of these eight genes were regulated during ATRA-induced monocytic differentiation of U-937 cells, however none of them antagonistically, upon both ATRA-treatment and AML1/ETO-induction. Since repression of WBSCR5 might be mediated by recruitment of HDACs through the fusion gene, cells were treated with TSA prior to transgene induction. However, the AML1/ETO-associated dysregulation of WBSCR5 gene expression (as well as that of the other seven genes studied) was not mediated by a TSA-sensitive mechanism. The identified genes provide a useful model to study the mechanism by which the AML1/ETO fusion protein exerts its function in transcriptional dysregulation in acute myeloid leukemia. The role of WBSCR5 in malignant hematopoietic cells warrants further study.


Sign in / Sign up

Export Citation Format

Share Document