scholarly journals Animal based low carbohydrate diet is associated with increased risk of type 2 diabetes in Tehranian adults

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Sohrab Sali ◽  
Hossein Farhadnejad ◽  
Golaleh Asghari ◽  
Farshad Teymoori ◽  
Parvin Mirmiran ◽  
...  

Abstract Background To investigate the association of low carbohydrate diet (LCD) score with the risk of type 2 diabetes among adults. Methods This cohort study was conducted on 4356 healthy participants aged ≥ 19 years old, who were followed-up for a mean duration of 3 years within the framework of the Tehran Lipid and Glucose Study. LCD score was calculated using a food frequency questionnaire according to intake of carbohydrate, protein, and fat at baseline. Diabetes was defined according to the criteria of the American Diabetes Association. Multivariable logistic regression models, adjusted for potential confounders, were used to estimate risk of diabetes across quartiles of LCD score. Results Mean ± SD age of the study participants (44.4% men) was 40.5 ± 13.0 years. The median (25–75 interquartile range) of LCD score was 17.0 (12.0–21.0) and after a 3 year follow-up period, 123 (2.8%) incident cases of diabetes were ascertained. After adjustment for confounding variables, including age, sex, smoking status, physical activity, total calorie intake, saturated fatty acid, waist circumference, educational level, and family history of diabetes, the multivariable-adjusted ORs (95% CIs) of type 2 diabetes, comparing the highest with the lowest quartiles, were 2.16 (1.16–4.04) for total LCD score (P-value = 0.015), 1.81 (1.06–3.11) for animal-based LCD score (P-value = 0.029), and 1.47 (0.85–2.52) for plant-based LCD score (P-value = 0.160). Conclusion Our findings suggest that a higher adherence to LCD, mostly with higher intakes of protein and fat from animal-source foods, can increase the incidence of diabetes; however, a plant-based low-carbohydrate dietary pattern is not significantly associated with risk of type 2 diabetes.

2021 ◽  
Vol 9 (1) ◽  
pp. e001948
Author(s):  
Marion Denos ◽  
Xiao-Mei Mai ◽  
Bjørn Olav Åsvold ◽  
Elin Pettersen Sørgjerd ◽  
Yue Chen ◽  
...  

IntroductionWe sought to investigate the relationship between serum 25-hydroxyvitamin D (25(OH)D) level and the risk of type 2 diabetes mellitus (T2DM) in adults who participated in the Trøndelag Health Study (HUNT), and the possible effect modification by family history and genetic predisposition.Research design and methodsThis prospective study included 3574 diabetes-free adults at baseline who participated in the HUNT2 (1995–1997) and HUNT3 (2006–2008) surveys. Serum 25(OH)D levels were determined at baseline and classified as <50 and ≥50 nmol/L. Family history of diabetes was defined as self-reported diabetes among parents and siblings. A Polygenic Risk Score (PRS) for T2DM based on 166 single-nucleotide polymorphisms was generated. Incident T2DM was defined by self-report and/or non-fasting glucose levels greater than 11 mmol/L and serum glutamic acid decarboxylase antibody level of <0.08 antibody index at the follow-up. Multivariable logistic regression models were applied to calculate adjusted ORs with 95% CIs. Effect modification by family history or PRS was assessed by likelihood ratio test (LRT).ResultsOver 11 years of follow-up, 92 (2.6%) participants developed T2DM. A higher risk of incident T2DM was observed in participants with serum 25(OH)D level of<50 nmol/L compared with those of ≥50 nmol/L (OR 1.72, 95% CI 1.03 to 2.86). Level of 25(OH)D<50 nmol/L was associated with an increased risk of T2DM in adults without family history of diabetes (OR 3.87, 95% CI 1.62 to 9.24) but not in those with a family history (OR 0.72, 95% CI 0.32 to 1.62, p value for LRT=0.003). There was no effect modification by PRS (p value for LRT>0.23).ConclusionSerum 25(OH)D<50 nmol/L was associated with an increased risk of T2DM in Norwegian adults. The inverse association was modified by family history of diabetes but not by genetic predisposition to T2DM.


2011 ◽  
Vol 93 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Lawrence de Koning ◽  
Teresa T Fung ◽  
Xiaomei Liao ◽  
Stephanie E Chiuve ◽  
Eric B Rimm ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 1445-1451
Author(s):  
Xiaofan Zhang ◽  
Youyou Zhang ◽  
Lingjia Gu ◽  
Haiying Tao ◽  
Shuang Zhu

Nanoparticles play a major role in drug delivery. We investigated the effects of the intelligent administration of insulin-loaded nanoparticles (ILNP) when combined with a low-carbohydrate diet (LCD) on the metabolism of patients with type 2 diabetes. ILNP and smart vesicle polymers were developed, and their properties were studied in vitro. Further clinical trials were performed, during which body mass index (BMI), fasting blood glucose (FBG) levels, and glycated hemoglobin (HbA1c) levels were compared between type 2 diabetes patients on LCDs those on normal diets. The results demonstrated that ILNP resisted protease degradation due to steric hindrance, and remained relatively stable at a pH range of 5.0 to 7.4. The nanoparticle enteric-coated capsules resisted the gastric juice acidity (pH = 2.5) and ensured the stable embedding of the insulin. The insulin was then released at a slightly higher pH (pH = 6.6), which mimicked the small intestine. Smart vesicle polymers further embedded the insulin and glucose oxidase simultaneously in nano polymer compounds, which allowed for a dose-dependent response to the concentration of glucose. Thus, the insulin was not released in a low-concentration glucose solution, but rather in a high-concentration glucose solution. Based on these results, we concluded that the clinical trial results showed that the intelligent administration of ILNP combined with a LCD reduced BMI, FBG, and HbA1c levels in patients with type 2 diabetes.


2019 ◽  
Vol 33 (11) ◽  
pp. 107415 ◽  
Author(s):  
Mizuho Kondo-Ando ◽  
Yusuke Seino ◽  
Risa Morikawa ◽  
Kana Negi ◽  
Hidechika Todoroki ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. e001303
Author(s):  
Toru Kusakabe ◽  
Shigefumi Yokota ◽  
Mika Shimizu ◽  
Takayuki Inoue ◽  
Masashi Tanaka ◽  
...  

IntroductionTreatment using sodium-glucose cotransporter (SGLT) 2 inhibitor and low-carbohydrate diet (LCD) for obesity and type 2 diabetes are similar in terms of carbohydrate limitation. However, their mechanisms of action differ, and the effects on the body remain unclear. We investigated the effects of SGLT2 inhibitor and LCD on body composition and metabolic profile using the db/db mouse model for obesity and type 2 diabetes.Research design and methodsEight-week-old male db/db mice were divided into four groups: mice receiving normal diet and vehicle or canagliflozin (Cana) administration and mice receiving LCD and vehicle or Cana administration for 8 weeks. Consumed calories were adjusted to be equal among the groups.ResultsBoth Cana administration and LCD feeding resulted in significant weight gain. Cana administration significantly decreased plasma glucose levels and increased plasma insulin levels with preservation of pancreatic β cells. However, LCD feeding did not improve plasma glucose levels but deteriorated insulin sensitivity. LCD feeding significantly reduced liver weight and hepatic triglyceride content; these effects were not observed with Cana administration. Combined treatment with LCD did not lead to an additive increase in blood β-ketone levels.ConclusionsSGLT2 inhibitors and LCD exert differential effects on the body. Their combined use may achieve better metabolic improvements in obesity and type 2 diabetes.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Shaminie J. Athinarayanan ◽  
Sarah J. Hallberg ◽  
Amy L. McKenzie ◽  
Katharina Lechner ◽  
Sarah King ◽  
...  

Abstract Background We have previously reported that in patients with type 2 diabetes (T2D) consumption of a very low carbohydrate diet capable of inducing nutritional ketosis over 2 years (continuous care intervention, CCI) resulted in improved body weight, glycemic control, and multiple risk factors for cardiovascular disease (CVD) with the exception of an increase in low density lipoprotein cholesterol (LDL-C). In the present study, we report the impact of this intervention on markers of risk for atherosclerotic cardiovascular disease (CVD), with a focus on lipoprotein subfraction particle concentrations as well as carotid-artery intima-media thickness (CIMT). Methods Analyses were performed in patients with T2D who completed 2 years of this study (CCI; n = 194; usual care (UC): n = 68). Lipoprotein subfraction particle concentrations were measured by ion mobility at baseline, 1, and 2 years and CIMT was measured at baseline and 2 years. Principal component analysis (PCA) was used to assess changes in independent clusters of lipoprotein particles. Results At 2 years, CCI resulted in a 23% decrease of small LDL IIIb and a 29% increase of large LDL I with no change in total LDL particle concentration or ApoB. The change in proportion of smaller and larger LDL was reflected by reversal of the small LDL subclass phenotype B in a high proportion of CCI participants (48.1%) and a shift in the principal component (PC) representing the atherogenic lipoprotein phenotype characteristic of T2D from a major to a secondary component of the total variance. The increase in LDL-C in the CCI group was mainly attributed to larger cholesterol-enriched LDL particles. CIMT showed no change in either the CCI or UC group. Conclusion Consumption of a very low carbohydrate diet with nutritional ketosis for 2 years in patients with type 2 diabetes lowered levels of small LDL particles that are commonly increased in diabetic dyslipidemia and are a marker for heightened CVD risk. A corresponding increase in concentrations of larger LDL particles was responsible for higher levels of plasma LDL-C. The lack of increase in total LDL particles, ApoB, and in progression of CIMT, provide supporting evidence that this dietary intervention did not adversely affect risk of CVD.


Sign in / Sign up

Export Citation Format

Share Document