scholarly journals Unbiased proteomic mapping of the LINE-1 promoter using CRISPR Cas9

Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erica M. Briggs ◽  
Paolo Mita ◽  
Xiaoji Sun ◽  
Susan Ha ◽  
Nikita Vasilyev ◽  
...  

Abstract Background The autonomous retroelement Long Interspersed Element-1 (LINE-1) mobilizes though a copy and paste mechanism using an RNA intermediate (retrotransposition). Throughout human evolution, around 500,000 LINE-1 sequences have accumulated in the genome. Most of these sequences belong to ancestral LINE-1 subfamilies, including L1PA2-L1PA7, and can no longer mobilize. Only a small fraction of LINE-1 sequences, approximately 80 to 100 copies belonging to the L1Hs subfamily, are complete and still capable of retrotransposition. While silenced in most cells, many questions remain regarding LINE-1 dysregulation in cancer cells. Results Here, we optimized CRISPR Cas9 gRNAs to specifically target the regulatory sequence of the L1Hs 5’UTR promoter. We identified three gRNAs that were more specific to L1Hs, with limited binding to older LINE-1 sequences (L1PA2-L1PA7). We also adapted the C-BERST method (dCas9-APEX2 Biotinylation at genomic Elements by Restricted Spatial Tagging) to identify LINE-1 transcriptional regulators in cancer cells. Our LINE-1 C-BERST screen revealed both known and novel LINE-1 transcriptional regulators, including CTCF, YY1 and DUSP1. Conclusion Our optimization and evaluation of gRNA specificity and application of the C-BERST method creates a tool for studying the regulatory mechanisms of LINE-1 in cancer. Further, we identified the dual specificity protein phosphatase, DUSP1, as a novel regulator of LINE-1 transcription.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pablo Cáceres ◽  
Agustín Barría ◽  
Kris A. Christensen ◽  
Liane N. Bassini ◽  
Katharina Correa ◽  
...  

AbstractSea lice (Caligus rogercresseyi) is an ectoparasite which causes major production losses in the salmon aquaculture industry worldwide. Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) are two of the most susceptible salmonid species to sea lice infestation. The objectives of this study were to: (1) identify genomic regions associated with resistance to Caligus rogercresseyi in Atlantic salmon and rainbow trout by performing single-step Genome-Wide Association studies (ssGWAS), and (2) identify candidate genes related to trait variation based on exploring orthologous genes within the associated regions across species. A total of 2626 Atlantic salmon and 2643 rainbow trout were challenged and genotyped with 50 K and 57 K SNP panels, respectively. We ran two independent ssGWAS for sea lice resistance on each species and identified 7 and 13 regions explaining more than 1% of the genetic variance for the trait, with the most important regions explaining 3% and 2.7% for Atlantic salmon and rainbow trout, respectively. We identified genes associated with immune response, cytoskeleton function, and cell migration when focusing on important genomic regions for each species. Moreover, we found 15 common orthogroups which were present in more than one associated genomic region, within- or between-species; however, only one orthogroup showed a clear potential biological relevance in the response against sea lice. For instance, dual-specificity protein phosphatase 10-like (dusp10) and dual-specificity protein phosphatase 8 (dusp8) were found in genomic regions associated with lice density in Atlantic salmon and rainbow trout, respectively. Dusp10 and dusp8 are modulators of the MAPK pathway and might be involved in the differences of the inflammation response between lice resistant and susceptible fish from both species. Our results provide further knowledge on candidate genes related to sea lice resistance and may help establish better control for sea lice in fish populations.


2021 ◽  
Vol 146 ◽  
pp. 103486
Author(s):  
Tânia R. Fernandes ◽  
Encarnación Sánchez Salvador ◽  
Ángela G. Tapia ◽  
Antonio Di Pietro

1999 ◽  
Vol 344 (3) ◽  
pp. 819 ◽  
Author(s):  
Koji NAKAMURA ◽  
Hiroshi SHIMA ◽  
Masahiko WATANABE ◽  
Tatsuji HANEJI ◽  
Kunimi KIKUCHI

Sign in / Sign up

Export Citation Format

Share Document