scholarly journals The effects of cocoa flavanols on indices of muscle recovery and exercise performance: a narrative review

Author(s):  
Liam D. Corr ◽  
Adam Field ◽  
Deborah Pufal ◽  
Tom Clifford ◽  
Liam D. Harper ◽  
...  

Abstract Exercise-induced muscle damage (EIMD) is associated with oxidative stress and inflammation, muscle soreness, and reductions in muscle function. Cocoa flavanols (CF) are (poly)phenols with antioxidant and anti-inflammatory effects and thus may attenuate symptoms of EIMD. The purpose of this narrative review was to collate and evaluate the current literature investigating the effect of CF supplementation on markers of exercise-induced oxidative stress and inflammation, as well as changes in muscle function, perceived soreness, and exercise performance. Acute and sub-chronic intake of CF reduces oxidative stress resulting from exercise. Evidence for the effect of CF on exercise-induced inflammation is lacking and the impact on muscle function, perceived soreness and exercise performance is inconsistent across studies. Supplementation of CF may reduce exercise-induced oxidative stress, with potential for delaying fatigue, but more evidence is required for any definitive conclusions on the impact of CF on markers of EIMD. Graphic abstract

Author(s):  
Kenji Doma ◽  
Baily Devantier-Thomas ◽  
Daniel Gahreman ◽  
Jonathan Connor

Abstract. This systematic review and meta-analysis examined the effects of selected root plants (curcumin, ginseng, ginger and garlic) on markers of muscle damage and muscular performance measures following muscle-damaging protocols. We included 25 studies (parallel and crossover design) with 353 participants and used the PEDro scale to appraise each study. Forest plots were generated to report on standardised mean differences (SMD) and p-values at 24 and 48 hours following the muscle-damaging protocols. The meta-analysis showed that the supplemental (SUPP) condition showed significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) and muscle soreness at 24 hours and 48 hours (p < 0.01) than the placebo (PLA) condition. The inflammatory markers were significantly lower for the SUPP condition than the PLA condition at 24 hours (p = 0.02), although no differences were identified at 48 hours (p = 0.40). There were no significant differences in muscular performance measures between the SUPP and PLA conditions at 24 hours and 48 hours (p > 0.05) post-exercise. According to our qualitative data, a number of studies reported a reduction in oxidative stress (e.g., malondialdehyde, superoxide dismutase) with a concomitant upregulation of anti-oxidant status, although other studies showed no effects. Accordingly, selected root plants minimised the level of several biomarkers of muscle damage, inflammation and muscle soreness during periods of exercise-induced muscle damage. However, the benefits of these supplements in ameliorating oxidative stress, increasing anti-oxidant status and accelerating recovery of muscular performance appears equivocal, warranting further research in these outcome measures.


2020 ◽  
Vol 30 (5) ◽  
pp. 338-344
Author(s):  
Liam D. Corr ◽  
Adam Field ◽  
Deborah Pufal ◽  
Jenny Killey ◽  
Tom Clifford ◽  
...  

Polyphenol consumption has become a popular method of trying to temper muscle damage. Cocoa flavanols (CF) have attracted attention due to their high polyphenol content and palatability. As such, this study will investigate whether an acute dose of CF can aid recovery following exercise-induced muscle damage. The study was a laboratory-based, randomized, single-blind, nutrient-controlled trial involving 23 participants (13 females and 10 males). Participants were randomized into either control ∼0 mg CF (n = 8, four females); high dose of 830 mg CF (CF830, n = 8, five females); or supra dose of 1,245 mg CF (CF1245, n = 7, four females). The exercise-induced muscle damage protocol consisted of five sets of 10 maximal concentric/eccentric hamstring curls and immediately consumed their assigned drink following completion. To measure muscle recovery, maximal voluntary isometric contraction (MVIC) of the knee flexors at 60° and 30°, a visual analog scale (VAS), and lower-extremity function scale were taken at baseline, immediately, 24-, 48-, and 72-hr postexercise-induced muscle damage. There was a main effect for time for all variables (p < .05). However, no significant differences were observed between groups for all measures (p ≥ .17). At 48 hr, there were large effect sizes between control and CF1245 for MVIC60 (p = .17, d = 0.8); MVIC30 (p = .26, d = 0.8); MVIC30 percentage change (p = .24 d = 0.9); and visual analog scale (p = .25, d = 0.9). As no significant differences were observed following the consumption of CF, there is reason to believe that CF offer no benefit for muscle recovery when ingested acutely.


2014 ◽  
Vol 9 (2) ◽  
pp. 256-264 ◽  
Author(s):  
François Bieuzen ◽  
Jeanick Brisswalter ◽  
Christopher Easthope ◽  
Fabrice Vercruyssen ◽  
Thierry Bernard ◽  
...  

Background:Compression garments are increasingly popular in long-distance running events where they are used to limit cumulative fatigue and symptoms associated with mild exercise-induced muscle damage (EIMD). However, the effective benefits remain unclear.Objective:This study examined the effect of wearing compression stockings (CS) on EIMD indicators. Compression was applied during or after simulated trail races performed at competition pace in experienced off-road runners.Methods:Eleven highly trained male runners participated in 3 simulated trail races (15.6 km: uphill section 6.6 km, average gradient 13%, and downhill section 9.0 km, average gradient –9%) in a randomized crossover trial. The effect of wearing CS while running or during recovery was tested and compared with a control condition (ie, run and recovery without CS; non- CS). Indicators of muscle function, muscle damage (creatine kinase; CK), inflammation (interleukin-6; IL-6), and perceived muscle soreness were recorded at baseline (1 h before warm-up) and 1, 24, and 48 h after the run.Results:Perceived muscle soreness was likely to be lower when participants wore CS during trail running compared with the control condition (1 h postrun, 82% chance; 24 h postrun, 80% chance). A likely or possibly beneficial effect of wearing CS during running was also found for isometric peak torque at 1 h postrun (70% chance) and 24 h postrun (60% chance) and throughout the recovery period on countermovement jump, compared with non-CS. Possible, trivial, or unclear differences were observed for CK and IL-6 between all conditions.Conclusion:Wearing CS during simulated trail races mainly affects perceived leg soreness and muscle function. These benefits are visible very shortly after the start of the recovery period.


2019 ◽  
Vol 17 (4) ◽  
pp. 401-414 ◽  
Author(s):  
Steven A. Basham, MS ◽  
Hunter S. Waldman, PhD ◽  
Ben M. Krings, PhD ◽  
John Lamberth, PhD ◽  
JohnEric W. Smith, PhD ◽  
...  

2021 ◽  
pp. 194173812110364
Author(s):  
Daniel Rojano-Ortega ◽  
José Peña Amaro ◽  
Antonio J. Berral-Aguilar ◽  
Francisco J. Berral-de la Rosa

Context: Beetroots have antioxidant and anti-inflammatory properties, which may help attenuate inflammation and oxidative stress, enhancing recovery from exercise-induced muscle damage (EIMD). Objective: To evaluate the effects of beetroot supplementation on oxidative stress, inflammation, and recovery after EIMD. Data Sources: SPORTDiscus, PubMed, Web of Science, and Scopus databases were searched, and hand-searching was performed by looking to relevant studies that were cited in other studies. Study Selection: For a study to be included in this review, the following inclusion criteria had to be met: (1) research conducted with human participants, (2) original articles in peer-reviewed publications, (3) original studies that had investigated beetroot supplementation intervention on muscle damage and recovery, (4) research conducted with 1 control/placebo group, and (5) articles published from inception to October 2020. Study Design: Systematic review using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. Level of Evidence: Level 3. Data Extraction: Two of the 4 authors independently extracted data and assessed the methodological quality of the articles with the PEDro scale. All discrepancies were resolved through a consensus meeting. Results: A total of 9 studies were included in this review. The methodological quality of the included studies ranged from moderate to high. Most of the studies found a better recovery of functional variables and muscle soreness, but improvements in markers of muscle damage, inflammation, and oxidative stress were not reported. Conclusion: The existing evidence suggests that a short-term beetroot supplementation has the potential to accelerate recovery of functional measures and muscle soreness, but further research is needed to clarify if a longer supplementation period (with some days before exercise and some days after) could also promote recovery of markers of muscle damage, inflammation, and oxidative stress.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Marco Malaguti ◽  
Cristina Angeloni ◽  
Silvana Hrelia

Although moderate physical exercise is considered an essential component of a healthy lifestyle that leads the organism to adapt itself to different stresses, exercise, especially when exhaustive, is also known to induce oxidative stress, inflammation, and muscle damage. Many efforts have been carried out to identify dietary strategies or micronutrients able to prevent or at least attenuate the exercise-induced muscle damage and stress. Unfortunately most studies have failed to show protection, and at the present time data supporting the protective effect of micronutrients, as antioxidant vitamins, are weak and trivial. This review focuses on those polyphenols, present in the plant kingdom, that have been recently suggested to exert some positive effects on exercise-induced muscle damage and oxidative stress. In the last decade flavonoids as quercetin, catechins, and other polyphenols as resveratrol have caught the scientists attention. However, at the present time drawing a clear and definitive conclusion seems to be untimely.


2006 ◽  
Vol 16 (3) ◽  
pp. 270-280 ◽  
Author(s):  
S.C. Bryer ◽  
A.H. Goldfarb

This study investigated if vitamin C supplementation before and after eccentric exercise could reduce muscle soreness (MS), oxidative stress, and muscle function. Eighteen healthy men randomly assigned to either a placebo (P) or vitamin C (VC) (3 g/d) treatment group took pills for 2 wk prior and 4 d after performing 70 eccentric elbow extensions with their non-dominant arm. MS increased in both groups with significantly reduced MS for the first 24 h with VC. Range of motion was reduced equally in both groups after the exercise (P ≥ 0.05). Muscle force declined equally and was unaffected by treatment. VC attenuated the creatine kinase (CK) increase at 48 h after exercise with similar CK after this time. Gluta-thione ratio (oxidized glutathione/total glutathione) was significantly increased at 4 and 24 h with P but VC prevented this change. These data suggest that vitamin C pretreatment can reduce MS, delay CK increase, and prevent blood glutathione oxidation with little influence on muscle function loss.


Sign in / Sign up

Export Citation Format

Share Document