scholarly journals Gantenerumab reduces amyloid-β plaques in patients with prodromal to moderate Alzheimer’s disease: a PET substudy interim analysis

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory Klein ◽  
Paul Delmar ◽  
Nicola Voyle ◽  
Sunita Rehal ◽  
Carsten Hofmann ◽  
...  

Abstract Background We previously investigated low doses (105 or 225 mg) of gantenerumab, a fully human monoclonal antibody that binds and removes aggregated amyloid-β by Fc receptor-mediated phagocytosis, in the SCarlet RoAD (SR) and Marguerite RoAD (MR) phase 3 trials. Several lines of evidence suggested that higher doses may be necessary to achieve clinical efficacy. We therefore designed a positron emission tomography (PET) substudy to evaluate the effect of gantenerumab uptitrated to 1200 mg every 4 weeks on amyloid-β plaques as measured using florbetapir PET in patients with prodromal to moderate Alzheimer’s disease (AD). Methods A subset of patients enrolled in the SR and MR studies who subsequently entered the open-label extensions (OLEs) were included in this substudy. Patients were aged 50 to 90 years with a clinical diagnosis of probable prodromal to moderate AD and were included based on a visual read of the original screening scan in the double-blind phase. Patients were assigned to 1 of 5 titration schedules (ranging from 2 to 10 months) with a target gantenerumab dose of 1200 mg every 4 weeks. The main endpoint of this substudy was change in amyloid-β plaque burden from OLE baseline to week 52 and week 104, assessed using florbetapir PET. Florbetapir global cortical signal was calculated using a prespecified standard uptake value ratio method converted to the Centiloid scale. Results Sixty-seven of the 89 patients initially enrolled had ≥ 1 follow-up scan by August 15, 2018. Mean amyloid levels were reduced by 39 Centiloids by the first year and 59 Centiloids by year 2, a 3.5-times greater reduction than was seen after 2 years at 225 mg in SR. At years 1 and 2, 37% and 51% of patients, respectively, had amyloid-β plaque levels below the amyloid-β positivity threshold. Conclusion Results from this exploratory interim analysis of the PET substudy suggest that gantenerumab doses up to 1200 mg resulted in robust amyloid-β plaque removal at 2 years. PET amyloid levels were consistent with sparse-to-no neuritic amyloid-β plaques in 51% of patients after 2 years of therapy. Amyloid reductions were similar to those observed in other placebo-controlled studies that have suggested potential clinical benefit. Trial registration ClinicalTrials.gov, NCT01224106 (SCarlet RoAD) and NCT02051608 (Marguerite RoAD).

2010 ◽  
Vol 74 (11) ◽  
pp. 2299-2306 ◽  
Author(s):  
Nakaba MURATA ◽  
Kazuma MURAKAMI ◽  
Yusuke OZAWA ◽  
Noriaki KINOSHITA ◽  
Kazuhiro IRIE ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
Seung-Jun Seo ◽  
Won-Seok Chang ◽  
Jae-Geun Jeon ◽  
Younshick Choi ◽  
EunHo Kim ◽  
...  

Background: The coexistence of magnetite within protein aggregates in the brain is a typical pathologic feature of Alzheimer’s disease (AD), and the formation of amyloid-β (Aβ) plaques induces critical impairment of cognitive function. Objective: This study aimed to investigate the therapeutic effect of proton stimulation (PS) targeting plaque magnetite in the transgenic AD mouse brain. Methods: A proton transmission beam was applied to the whole mouse brain at a single entrance dose of 2 or 4 Gy to test the effect of disruption of magnetite-containing Aβ plaques by electron emission from magnetite. The reduction in Aβ plaque burden and the cognitive function of the PS-treated mouse group were assayed by histochemical analysis and memory tests, respectively. Aβ-magnetite and Aβ fibrils were treated with PS to investigate the breakdown of the amyloid protein matrix. Results: Single PS induced a 48–87%reduction in both the amyloid plaque burden and ferrous-containing magnetite level in the early-onset AD mouse brain while saving normal tissue. The overall Aβ plaque burden (68–82%) and (94–97%) hippocampal magnetite levels were reduced in late onset AD mice that showed improvements in cognitive function after PS compared with untreated AD mice (p <  0.001). Analysis of amyloid fibrils after exposure to a single 2 or 4 Gy proton transmission beam demonstrated that the protein matrix was broken down only in magnetite-associated Aβ fibrils. Conclusion: Single PS targeting plaque magnetite effectively decreases the amyloid plaque burden and the ferrous-containing magnetite level, and this effect is useful for memory recovery.


2020 ◽  
Vol 78 (2) ◽  
pp. 721-734
Author(s):  
Cynthia M. Stonnington ◽  
Stefanie N. Velgos ◽  
Yinghua Chen ◽  
Sameena Syed ◽  
Matt Huentelman ◽  
...  

Background: Whether brain-derived neurotrophic factor (BDNF) Met carriage impacts the risk or progression of Alzheimer’s disease (AD) is unknown. Objective: To evaluate the interaction of BDNF Met and APOE4 carriage on cerebral metabolic rate for glucose (CMRgl), amyloid burden, hippocampus volume, and cognitive decline among cognitively unimpaired (CU) adults enrolled in the Arizona APOE cohort study. Methods: 114 CU adults (mean age 56.85 years, 38% male) with longitudinal FDG PET, magnetic resonance imaging, and cognitive measures were BDNF and APOE genotyped. A subgroup of 58 individuals also had Pittsburgh B (PiB) PET imaging. We examined baseline CMRgl, PiB PET amyloid burden, CMRgl, and hippocampus volume change over time, and rate of change in cognition over an average of 15 years. Results: Among APOE4 carriers, BDNF Met carriers had significantly increased amyloid deposition and accelerated CMRgl decline in regions typically affected by AD, but without accompanying acceleration of cognitive decline or hippocampal volume changes and with higher baseline frontal CMRgl and slower frontal decline relative to the Val/Val group. The BDNF effects were not found among APOE4 non-carriers. Conclusion: Our preliminary studies suggest that there is a weak interaction between BDNF Met and APOE4 on amyloid-β plaque burden and longitudinal PET measurements of AD-related CMRgl decline in cognitively unimpaired late-middle-aged and older adults, but with no apparent effect upon rate of cognitive decline. We suggest that cognitive effects of BDNF variants may be mitigated by compensatory increases in frontal brain activity—findings that would need to be confirmed in larger studies.


2021 ◽  
Author(s):  
Qiaoqiao Shi ◽  
Tao Sun ◽  
Yongzhi Zhang ◽  
Chanikarn Power ◽  
Camilla Hoesch ◽  
...  

AbstractPyroglutamate-3 amyloid-β (pGlu3 Aβ) is an N-terminally modified, toxic form of amyloid-β that is present in cerebral amyloid plaques and vascular deposits. Using the Fc-competent murine anti-pGlu3 Aβ monoclonal antibody (mAb), 07/2a, we present here a nonpharmacological approach using focused ultrasound (FUS) with intravenous (i.v.) injection of microbubbles (MB) to facilitate i.v. delivery of the 07/2a mAb across the blood brain barrier (BBB) in order to improve Aβ removal and restore memory in aged APP/PS1 mice, an Alzheimer’s disease (AD)-like model of amyloidogenesis.Compared to sham-treated controls, aged APP/PS1 mice treated with 07/2a immediately prior to FUS-mediated BBB disruption (mAb + FUS-BBBD combination treatment) showed significantly better spatial learning and memory in the Water T Maze. FUS-BBBD treatment alone improved contextual fear learning and memory in aged WT and APP/PS1 mice, respectively. APP/PS1 mice given the combination treatment had reduced Aβ42 and pGlu3 Aβ hippocampal plaque burden compared to PBS-treated APP/PS1 mice.Hippocampal synaptic puncta density and synaptosomal synaptic protein levels were also higher in APP/PS1 mice treated with 07/2a just prior to BBB disruption. Increased Iba-1+ microglia were observed in the hippocampi of AD mice treated with 07/2a with and without FUS-BBBD, and APP/PS1 mice that received hippocampal BBB disruption and 07/2a showed increased Ly6G+ monocytes in hippocampal CA3. FUS-induced BBB disruption did not increase the incidence of microhemorrhage in mice with or without 07/2a mAb treatment.Our findings suggest that FUS is useful tool that may enhance delivery of an anti-pGlu3 Aβ mAb for immunotherapy. FUS-mediated BBB disruption in combination with the 07/2a mAb also appears to facilitate monocyte infiltration in this AD model. Overall, these effects resulted in greater sparing of synapses and improved cognitive function without causing overt damage, suggesting the possibility of FUS as a noninvasive method to increase the therapeutic efficacy in AD patients.


2021 ◽  
pp. 1-26
Author(s):  
Carolin Hofmann ◽  
Annika Sander ◽  
Xing Xing Wang ◽  
Martina Buerge ◽  
Bettina Jungwirth ◽  
...  

Background: Studies suggest that general anesthetics like isoflurane and sevoflurane may aggravate Alzheimer’s disease (AD) neuropathogenesis, e.g., increased amyloid-β (Aβ) protein aggregation resulting in synaptotoxicity and cognitive dysfunction. Other studies showed neuroprotective effects, e.g., with xenon. Objective: In the present study, we want to detail the interactions of inhalational anesthetics with Aβ-derived pathology. We hypothesize xenon-mediated beneficial mechanisms regarding Aβ oligomerization and Aβ-mediated neurotoxicity on processes related to cognition. Methods: Oligomerization of Aβ 1–42 in the presence of anesthetics has been analyzed by means of TR-FRET and silver staining. For monitoring changes in neuronal plasticity due to anesthetics and Aβ 1–42, Aβ 1–40, pyroglutamate-modified amyloid-(AβpE3), and nitrated Aβ (3NTyrAβ), we quantified long-term potentiation (LTP) and spine density. We analyzed network activity in the hippocampus via voltage-sensitive dye imaging (VSDI) and cognitive performance and Aβ plaque burden in transgenic AD mice (ArcAβ) after anesthesia. Results: Whereas isoflurane and sevoflurane did not affect Aβ 1–42 aggregation, xenon alleviated the propensity for aggregation and partially reversed AβpE3 induced synaptotoxic effects on LTP. Xenon and sevoflurane reversed Aβ 1–42-induced spine density attenuation. In the presence of Aβ 1–40 and AβpE3, anesthetic-induced depression of VSDI-monitored signaling recovered after xenon, but not isoflurane and sevoflurane removal. In slices pretreated with Aβ 1–42 or 3NTyrAβ, activity did not recover after washout. Cognitive performance and plaque burden were unaffected after anesthetizing WT and ArcAβ mice. Conclusion: None of the anesthetics aggravated Aβ-derived AD pathology in vivo. However, Aβ and anesthetics affected neuronal activity in vitro, whereby xenon showed beneficial effects on Aβ 1–42 aggregation, LTP, and spine density.


2021 ◽  
pp. 1-14
Author(s):  
Yang Zhao ◽  
Jian Bao ◽  
Wei Liu ◽  
Xiaokang Gong ◽  
Zheng Liang ◽  
...  

Background: Alzheimer’s disease (AD), with cognitive impairment as the main clinical manifestation, is a progressive neurodegenerative disease. The assembly of amyloid-β (Aβ) as senile plaques is one of the most well-known histopathological alterations in AD. Several studies reported that cognitive training reduced Aβ deposition and delayed memory loss. However, the long-term benefits of spatial training and the underlying neurobiological mechanisms have not yet been elucidated. Objective: To explore the long-term effects of spatial training on AD-related pathogenic processes in APP/PS1 mice. Methods: We used Morris water maze (MWM), Open Field, Barnes Maze, western blotting, qPCR, and immunofluorescence. Results: One-month MWM training in APP/PS1 mice at 2.5 months of age could attenuate Aβ deposition and decrease the expression of β-secretase (BACE1) and amyloid-β protein precursor (AβPP) with long-term effects. Simultaneously, regular spatial training increased the expression of synapse-related proteins in the hippocampus. Moreover, MWM training increased adult hippocampal neurogenesis in AD model mice. Nonetheless, cognitive deficits in APP/PS1 transgenic mice at 7 months of age were not attenuated by MWM training at an early stage. Conclusion: Our study demonstrates that MWM training alleviates amyloid plaque burden and adult hippocampal neurogenesis deficits with long-term effects in AD model mice.


2019 ◽  
Vol 116 (18) ◽  
pp. 8895-8900 ◽  
Author(s):  
Dylan Shea ◽  
Cheng-Chieh Hsu ◽  
Timothy M. Bi ◽  
Natasha Paranjapye ◽  
Matthew Carter Childers ◽  
...  

Alzheimer’s disease (AD) is characterized by the deposition of β-sheet–rich, insoluble amyloid β-peptide (Aβ) plaques; however, plaque burden is not correlated with cognitive impairment in AD patients; instead, it is correlated with the presence of toxic soluble oligomers. Here, we show, by a variety of different techniques, that these Aβ oligomers adopt a nonstandard secondary structure, termed “α-sheet.” These oligomers form in the lag phase of aggregation, when Aβ-associated cytotoxicity peaks, en route to forming nontoxic β-sheet fibrils. De novo-designed α-sheet peptides specifically and tightly bind the toxic oligomers over monomeric and fibrillar forms of Aβ, leading to inhibition of aggregation in vitro and neurotoxicity in neuroblastoma cells. Based on this specific binding, a soluble oligomer-binding assay (SOBA) was developed as an indirect probe of α-sheet content. Combined SOBA and toxicity experiments demonstrate a strong correlation between α-sheet content and toxicity. The designed α-sheet peptides are also active in vivo where they inhibit Aβ-induced paralysis in a transgenic Aβ Caenorhabditis elegans model and specifically target and clear soluble, toxic oligomers in a transgenic APPsw mouse model. The α-sheet hypothesis has profound implications for further understanding the mechanism behind AD pathogenesis.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Samantha C Burnham ◽  
Noelia Fandos ◽  
Christopher Fowler ◽  
Virginia Pérez-Grijalba ◽  
Vincent Dore ◽  
...  

Abstract Plasma amyloid-β peptide concentration has recently been shown to have high accuracy to predict amyloid-β plaque burden in the brain. These amyloid-β plasma markers will allow wider screening of the population and simplify and reduce screening costs for therapeutic trials in Alzheimer’s disease. The aim of this study was to determine how longitudinal changes in blood amyloid-β track with changes in brain amyloid-β. Australian Imaging, Biomarker and Lifestyle study participants with a minimum of two assessments were evaluated (111 cognitively normal, 7 mild cognitively impaired, 15 participants with Alzheimer’s disease). Amyloid-β burden in the brain was evaluated through PET and was expressed in Centiloids. Total protein amyloid-β 42/40 plasma ratios were determined using ABtest® assays. We applied our method for obtaining natural history trajectories from short term data to measures of total protein amyloid-β 42/40 plasma ratios and PET amyloid-β. The natural history trajectory of total protein amyloid-β 42/40 plasma ratios appears to approximately mirror that of PET amyloid-β, with both spanning decades. Rates of change of 7.9% and 8.8%, were observed for total protein amyloid-β 42/40 plasma ratios and PET amyloid-β, respectively. The trajectory of plasma amyloid-β preceded that of brain amyloid-β by a median value of 6 years (significant at 88% confidence interval). These findings, showing the tight association between changes in plasma and brain amyloid-β, support the use of plasma total protein amyloid-β 42/40 plasma ratios as a surrogate marker of brain amyloid-β. Also, that plasma total protein amyloid-β 42/40 plasma ratios has potential utility in monitoring trial participants, and as an outcome measure.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Friederike Thams ◽  
Anna Kuzmina ◽  
Malte Backhaus ◽  
Shu-Chen Li ◽  
Ulrike Grittner ◽  
...  

Abstract Background Given the growing older population worldwide, and the associated increase in age-related diseases, such as Alzheimer’s disease (AD), investigating non-invasive methods to ameliorate or even prevent cognitive decline in prodromal AD is highly relevant. Previous studies suggest transcranial direct current stimulation (tDCS) to be an effective method to boost cognitive performance, especially when applied in combination with cognitive training in healthy older adults. So far, no studies combining tDCS concurrent with an intense multi-session cognitive training in prodromal AD populations have been conducted. Methods The AD-Stim trial is a monocentric, randomized, double-blind, placebo-controlled study, including a 3-week tDCS-assisted cognitive training with anodal tDCS over left DLPFC (target intervention), compared to cognitive training plus sham (control intervention). The cognitive training encompasses a letter updating task and a three-stage Markov decision-making task. Forty-six participants with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) will be randomized block-wise to either target or control intervention group and participate in nine interventional visits with additional pre- and post-intervention assessments. Performance in the letter updating task after training and anodal tDCS compared to sham stimulation will be analyzed as primary outcome. Further, performance on the second training task and transfer tasks will be investigated. Two follow-up visits (at 1 and 7 months post-training) will be performed to assess possible maintenance effects. Structural and functional magnetic resonance imaging (MRI) will be applied before the intervention and at the 7-month follow-up to identify possible neural predictors for successful intervention. Significance With this trial, we aim to provide evidence for tDCS-induced improvements of multi-session cognitive training in participants with SCD and MCI. An improved understanding of tDCS effects on cognitive training performance and neural predictors may help to develop novel approaches to counteract cognitive decline in participants with prodromal AD. Trial registration ClinicalTrials.gov, NCT04265378. Registered on 07 February 2020. Retrospectively registered. Protocol version: Based on BB 004/18 version 1.2 (May 17, 2019). Sponsor: University Medicine Greifswald.


2021 ◽  
pp. 1-16
Author(s):  
Jonathan A. Zweig ◽  
Mikah S. Brandes ◽  
Barbara H. Brumbach ◽  
Maya Caruso ◽  
Kirsten M. Wright ◽  
...  

Background: The medicinal herb Centella asiatica has been long been used for its neuroprotective and cognitive enhancing effects. We have previously shown that two weeks of treatment with a water extract of Centella asiatica (CAW) improves cognition and activates the endogenous antioxidant response pathway without altering amyloid-β (Aβ) plaque burden. Objective: Here, we assess the effect of long-term treatment of CAW in the 5xFAD mouse model of Aβ accumulation. Methods: Four-month-old 5xFAD mice were treated with CAW in their drinking water (2 g/L) for three months at which point they underwent cognitive testing as well as analysis of Aβ plaque levels and antioxidant and synaptic gene expression. In order to confirm the involvement of the antioxidant regulatory transcription factor NRF2 on the effects of CAW on synaptic plasticity, neurons isolated from 5xFAD mice were also treated with CAW and the targeted inhibitor ML385. Results: Three months of treatment with CAW improved spatial and contextual memory as well as executive function in 5xFAD mice. This improvement was accompanied by increased antioxidant gene expression and a decrease in Aβ plaque burden relative to untreated 5xFAD animals. In isolated neurons, treatment with ML385 blocked the effects of CAW on dendritic arborization and synaptic gene expression. Conclusion: These results suggest that prolonged CAW exposure could be beneficial in Alzheimer’s disease and that these effects likely involve NRF2 activation. Moreover, these findings suggest that targeting NRF2 itself may be a relevant therapeutic strategy for improving synaptic plasticity and cognitive function in Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document