Prolonged Treatment with Centella asiatica Improves Memory, Reduces Amyloid-β Pathology, and Activates NRF2-Regulated Antioxidant Response Pathway in 5xFAD Mice

2021 ◽  
pp. 1-16
Author(s):  
Jonathan A. Zweig ◽  
Mikah S. Brandes ◽  
Barbara H. Brumbach ◽  
Maya Caruso ◽  
Kirsten M. Wright ◽  
...  

Background: The medicinal herb Centella asiatica has been long been used for its neuroprotective and cognitive enhancing effects. We have previously shown that two weeks of treatment with a water extract of Centella asiatica (CAW) improves cognition and activates the endogenous antioxidant response pathway without altering amyloid-β (Aβ) plaque burden. Objective: Here, we assess the effect of long-term treatment of CAW in the 5xFAD mouse model of Aβ accumulation. Methods: Four-month-old 5xFAD mice were treated with CAW in their drinking water (2 g/L) for three months at which point they underwent cognitive testing as well as analysis of Aβ plaque levels and antioxidant and synaptic gene expression. In order to confirm the involvement of the antioxidant regulatory transcription factor NRF2 on the effects of CAW on synaptic plasticity, neurons isolated from 5xFAD mice were also treated with CAW and the targeted inhibitor ML385. Results: Three months of treatment with CAW improved spatial and contextual memory as well as executive function in 5xFAD mice. This improvement was accompanied by increased antioxidant gene expression and a decrease in Aβ plaque burden relative to untreated 5xFAD animals. In isolated neurons, treatment with ML385 blocked the effects of CAW on dendritic arborization and synaptic gene expression. Conclusion: These results suggest that prolonged CAW exposure could be beneficial in Alzheimer’s disease and that these effects likely involve NRF2 activation. Moreover, these findings suggest that targeting NRF2 itself may be a relevant therapeutic strategy for improving synaptic plasticity and cognitive function in Alzheimer’s disease.

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 630 ◽  
Author(s):  
Donald G Matthews ◽  
Maya Caruso ◽  
Charles F Murchison ◽  
Jennifer Y Zhu ◽  
Kirsten M Wright ◽  
...  

Centella asiatica (CA) herb is a traditional medicine, long reputed to provide cognitive benefits. We have reported that CA water extract (CAW) treatment improves cognitive function of aged Alzheimer’s disease (AD) model Tg2576 and wild-type (WT) mice, and induces an NRF2-regulated antioxidant response in aged WT mice. Here, CAW was administered to AD model 5XFAD female and male mice and WT littermates (age: 7.6 +/ − 0.6 months), and object recall and contextual fear memory were tested after three weeks treatment. CAW’s impact on amyloid-β plaque burden, and markers of neuronal oxidative stress and synaptic density, was assessed after five weeks treatment. CAW antioxidant activity was evaluated via nuclear transcription factor (erythroid-derived 2)-like 2 (NRF2) and NRF2-regulated antioxidant response element gene expression. Memory improvement in both genders and genotypes was associated with dose-dependent CAW treatment without affecting plaque burden, and marginally increased synaptic density markers in the hippocampus and prefrontal cortex. CAW treatment increased Nrf2 in hippocampus and other NRF2 targets (heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit). Reduced plaque-associated SOD1, an indicator of oxidative stress, was observed in the hippocampi and cortices of CAW-treated 5XFAD mice. We postulate that CAW treatment leads to reduced oxidative stress, contributing to improved neuronal health and cognition.


2010 ◽  
Vol 74 (11) ◽  
pp. 2299-2306 ◽  
Author(s):  
Nakaba MURATA ◽  
Kazuma MURAKAMI ◽  
Yusuke OZAWA ◽  
Noriaki KINOSHITA ◽  
Kazuhiro IRIE ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory Klein ◽  
Paul Delmar ◽  
Nicola Voyle ◽  
Sunita Rehal ◽  
Carsten Hofmann ◽  
...  

Abstract Background We previously investigated low doses (105 or 225 mg) of gantenerumab, a fully human monoclonal antibody that binds and removes aggregated amyloid-β by Fc receptor-mediated phagocytosis, in the SCarlet RoAD (SR) and Marguerite RoAD (MR) phase 3 trials. Several lines of evidence suggested that higher doses may be necessary to achieve clinical efficacy. We therefore designed a positron emission tomography (PET) substudy to evaluate the effect of gantenerumab uptitrated to 1200 mg every 4 weeks on amyloid-β plaques as measured using florbetapir PET in patients with prodromal to moderate Alzheimer’s disease (AD). Methods A subset of patients enrolled in the SR and MR studies who subsequently entered the open-label extensions (OLEs) were included in this substudy. Patients were aged 50 to 90 years with a clinical diagnosis of probable prodromal to moderate AD and were included based on a visual read of the original screening scan in the double-blind phase. Patients were assigned to 1 of 5 titration schedules (ranging from 2 to 10 months) with a target gantenerumab dose of 1200 mg every 4 weeks. The main endpoint of this substudy was change in amyloid-β plaque burden from OLE baseline to week 52 and week 104, assessed using florbetapir PET. Florbetapir global cortical signal was calculated using a prespecified standard uptake value ratio method converted to the Centiloid scale. Results Sixty-seven of the 89 patients initially enrolled had ≥ 1 follow-up scan by August 15, 2018. Mean amyloid levels were reduced by 39 Centiloids by the first year and 59 Centiloids by year 2, a 3.5-times greater reduction than was seen after 2 years at 225 mg in SR. At years 1 and 2, 37% and 51% of patients, respectively, had amyloid-β plaque levels below the amyloid-β positivity threshold. Conclusion Results from this exploratory interim analysis of the PET substudy suggest that gantenerumab doses up to 1200 mg resulted in robust amyloid-β plaque removal at 2 years. PET amyloid levels were consistent with sparse-to-no neuritic amyloid-β plaques in 51% of patients after 2 years of therapy. Amyloid reductions were similar to those observed in other placebo-controlled studies that have suggested potential clinical benefit. Trial registration ClinicalTrials.gov, NCT01224106 (SCarlet RoAD) and NCT02051608 (Marguerite RoAD).


2007 ◽  
Vol 35 (5) ◽  
pp. 1219-1223 ◽  
Author(s):  
M.J. Rowan ◽  
I. Klyubin ◽  
Q. Wang ◽  
N.W. Hu ◽  
R. Anwyl

There is growing evidence that mild cognitive impairment in early AD (Alzheimer's disease) may be due to synaptic dysfunction caused by the accumulation of non-fibrillar, oligomeric Aβ (amyloid β-peptide), long before widespread synaptic loss and neurodegeneration occurs. Soluble Aβ oligomers can rapidly disrupt synaptic memory mechanisms at extremely low concentrations via stress-activated kinases and oxidative/nitrosative stress mediators. Here, we summarize experiments that investigated whether certain putative receptors for Aβ, the αv integrin extracellular cell matrix-binding protein and the cytokine TNFα (tumour necrosis factor α) type-1 death receptor mediate Aβ oligomer-induced inhibition of LTP (long-term potentiation). Ligands that neutralize TNFα or genetic knockout of TNF-R1s (type-1 TNFα receptors) prevented Aβ-triggered inhibition of LTP in hippocampal slices. Similarly, antibodies to αv-containing integrins abrogated LTP block by Aβ. Protection against the synaptic plasticity-disruptive effects of soluble Aβ was also achieved using systemically administered small molecules targeting these mechanisms in vivo. Taken together, this research lends support to therapeutic trials of drugs antagonizing synaptic plasticity-disrupting actions of Aβ oligomers in preclinical AD.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1250 ◽  
Author(s):  
Desanka Milanovic ◽  
Snjezana Petrovic ◽  
Marjana Brkic ◽  
Vladimir Avramovic ◽  
Milka Perovic ◽  
...  

Long-term fish oil (FO) supplementation is able to improve Alzheimer’s disease (AD) pathology. We aimed to determine the impact of short-term fish oil (FO) intake on phospholipids composition and plaque pathology in 5xFAD mice, a widely used animal model of AD. A 3-week-long FO supplementation administered at 3 months of age decreased the number of dense core plaques in the 5xFAD cortex and changed phospholipids in the livers and brains of wild-type (Wt) and 5xFAD mice. Livers of both genotypes responded by increase of n-3 and reciprocal decrease of n-6 fatty acids. In Wt brains, FO supplementation induced elevation of n-3 fatty acids and subsequent enhancement of n-6/n-3 ratio. However, in 5xFAD brains the improved n-6/n-3 ratio was mainly due to FO-induced decrease in arachidonic and adrenic n-6 fatty acids. Also, brain and liver abundance of n-3 fatty acids were strongly correlated in Wts, oppositely to 5xFADs where significant brain-liver correlation exists only for n-6 fatty acids. Expression of omega-3 transporter Mfs2a remained unchanged after FO supplementation. We have demonstrated that even a short-term FO intake improves the phospholipid composition and has a significant effect on plaque burden in 5xFAD brains when applied in early stages of AD pathology.


2008 ◽  
Vol 23 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Muralikrishnan Dhanasekaran ◽  
Leigh A. Holcomb ◽  
Angie R. Hitt ◽  
Binu Tharakan ◽  
Jami W. Porter ◽  
...  

Brain ◽  
2015 ◽  
Vol 139 (2) ◽  
pp. 509-525 ◽  
Author(s):  
Andreas Müller-Schiffmann ◽  
Arne Herring ◽  
Laila Abdel-Hafiz ◽  
Aisa N. Chepkova ◽  
Sandra Schäble ◽  
...  

Abstract Despite amyloid plaques, consisting of insoluble, aggregated amyloid-β peptides, being a defining feature of Alzheimer’s disease, their significance has been challenged due to controversial findings regarding the correlation of cognitive impairment in Alzheimer’s disease with plaque load. The amyloid cascade hypothesis defines soluble amyloid-β oligomers, consisting of multiple amyloid-β monomers, as precursors of insoluble amyloid-β plaques. Dissecting the biological effects of single amyloid-β oligomers, for example of amyloid-β dimers, an abundant amyloid-β oligomer associated with clinical progression of Alzheimer’s disease, has been difficult due to the inability to control the kinetics of amyloid-β multimerization. For investigating the biological effects of amyloid-β dimers, we stabilized amyloid-β dimers by an intermolecular disulphide bridge via a cysteine mutation in the amyloid-β peptide (Aβ-S8C) of the amyloid precursor protein. This construct was expressed as a recombinant protein in cells and in a novel transgenic mouse, termed tgDimer mouse. This mouse formed constant levels of highly synaptotoxic soluble amyloid-β dimers, but not monomers, amyloid-β plaques or insoluble amyloid-β during its lifespan. Accordingly, neither signs of neuroinflammation, tau hyperphosphorylation or cell death were observed. Nevertheless, these tgDimer mice did exhibit deficits in hippocampal long-term potentiation and age-related impairments in learning and memory, similar to what was observed in classical Alzheimer’s disease mouse models. Although the amyloid-β dimers were unable to initiate the formation of insoluble amyloid-β aggregates in tgDimer mice, after crossbreeding tgDimer mice with the CRND8 mouse, an amyloid-β plaque generating mouse model, Aβ-S8C dimers were sequestered into amyloid-β plaques, suggesting that amyloid-β plaques incorporate neurotoxic amyloid-β dimers that by themselves are unable to self-assemble. Our results suggest that within the fine interplay between different amyloid-β species, amyloid-β dimer neurotoxic signalling, in the absence of amyloid-β plaque pathology, may be involved in causing early deficits in synaptic plasticity, learning and memory that accompany Alzheimer’s disease. 10.1093/brain/awv355_video_abstract awv355_video_abstract


2020 ◽  
Author(s):  
Jahirul Islam ◽  
Jung-Ah Cho ◽  
Ju-yong Kim ◽  
Kyung-Sun Park ◽  
Young-Jae koh ◽  
...  

Abstract Amyloid β (Aβ) and/or ATP activates NLRP3 inflammasome (N3I) by P2 × 7R ion channel of microglia, which is crucial in neuroinflammation shown in Alzheimer’s disease (AD). Due to polymorphisms, subtypes, and ubiquitous expression of P2 × 7R, inhibition of P2 × 7R has not been effective for AD. We first report that GPCR19 is a prerequisite for P2 × 7R-mediated N3I activation and Taurodeoxycholate (TDCA), a GPCR19 ligand, inhibited the priming phase of N3I activation, suppressed P2 × 7R expression and P2 × 7R-mediated Ca++ mobilization, and N3I oligomerization which is essential for production of IL-1β/IL-18. Further, TDCA increased expression of scavenger receptor (SR) A, enhanced phagocytosis of Aβ, and decreased Aβ plaque numbers in the brain of 5x Familial Alzheimer’s disease (5xFAD) mice. TDCA also reduced microgliosis, prevented neuronal loss, and improved memory function of 5xFAD mice. The pleiotropic roles of GPCR19 in P2 × 7-mediated N3I activation suggest that targeting GPCR19 might resolve neuroinflammation in AD patients.


Sign in / Sign up

Export Citation Format

Share Document