scholarly journals Accelerated long-term forgetting in healthy older adults predicts cognitive decline over 1 year

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Alfie R. Wearn ◽  
Esther Saunders-Jennings ◽  
Volkan Nurdal ◽  
Emma Hadley ◽  
Michael J. Knight ◽  
...  

Abstract Background Here, we address a pivotal factor in Alzheimer’s prevention—identifying those at risk early, when dementia can still be avoided. Recent research highlights an accelerated forgetting phenotype as a risk factor for Alzheimer’s disease. We hypothesized that delayed recall over 4 weeks would predict cognitive decline over 1 year better than 30-min delayed recall, the current gold standard for detecting episodic memory problems which could be an early clinical manifestation of incipient Alzheimer’s disease. We also expected hippocampal subfield volumes to improve predictive accuracy. Methods Forty-six cognitively healthy older people (mean age 70.7 ± 7.97, 21/46 female), recruited from databases such as Join Dementia Research, or a local database of volunteers, performed 3 memory tasks on which delayed recall was tested after 30 min and 4 weeks, as well as Addenbrooke’s Cognitive Examination III (ACE-III) and CANTAB Paired Associates Learning. Medial temporal lobe subregion volumes were automatically measured using high-resolution 3T MRI. The ACE-III was repeated after 12 months to assess the change in cognitive ability. We used univariate linear regressions and ROC curves to assess the ability of tests of delayed recall to predict cognitive decline on ACE-III over the 12 months. Results Fifteen of the 46 participants declined over the year (≥ 3 points lost on ACE-III). Four-week verbal memory predicted cognitive decline in healthy older people better than clinical gold standard memory tests and hippocampal MRI. The best single-test predictor of cognitive decline was the 4-week delayed recall on the world list (R2 = .123, p = .018, β = .418). Combined with hippocampal subfield volumetry, 4-week verbal recall identifies those at risk of cognitive decline with 93% sensitivity and 86% specificity (AUC = .918, p < .0001). Conclusions We show that a test of accelerated long-term forgetting over 4 weeks can predict cognitive decline in healthy older people where traditional tests of delayed recall cannot. Accelerated long-term forgetting is a sensitive, easy-to-test predictor of cognitive decline in healthy older people. Used alone or with hippocampal MRI, accelerated forgetting probes functionally relevant Alzheimer’s-related change. Accelerated forgetting will identify early-stage impairment, helping to target more invasive and expensive molecular biomarker testing.

2021 ◽  
Author(s):  
Cherie Strikwerda-Brown ◽  
Hazal Ozlen ◽  
Alexa Pichet Binette ◽  
Marianne Chapleau ◽  
Natalie Marchant ◽  
...  

Mindfulness, defined as the ability to engage in non-judgmental awareness of the present moment, has been associated with an array of health benefits. Mindfulness may also represent a protective factor for Alzheimer's disease (AD). Here, we tested the potential protective effect of trait mindfulness on cognitive decline and AD pathology in older adults at risk of AD dementia. Measures of trait mindfulness, longitudinal cognitive assessments, and AB- and tau- positron emission tomography (PET) scans were collected in 261 nondemented older adults with a family history of AD dementia from the PREVENT-AD observational cohort study. Multivariate partial least squares analyses were used to examine relationships between combinations of different facets of trait mindfulness and (1) cognitive decline, (2) AB, and (3) tau. Higher levels of trait mindfulness, particularly mindful nonjudgment, were associated with less cognitive decline, AB, and tau. Trait mindfulness may represent a psychological protective factor for AD dementia.


2020 ◽  
Vol 25 ◽  
pp. 102156
Author(s):  
Jasmeet P. Hayes ◽  
Jena N. Moody ◽  
Juan Guzmán Roca ◽  
Scott M. Hayes

2006 ◽  
Vol 14 (7S_Part_11) ◽  
pp. P632-P634
Author(s):  
Heather L. Shouel ◽  
Rebecca L. Koscik ◽  
Lindsay R. Clark ◽  
Sara Elizabeth Berman ◽  
Brad T. Christian ◽  
...  

2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Fedor Levin ◽  
Irina Jelistratova ◽  
Tobey J. Betthauser ◽  
Sterling C. Johnson ◽  
Stefan J. Teipel ◽  
...  

1997 ◽  
Vol 3 (6) ◽  
pp. 534-544 ◽  
Author(s):  
KIM S. GRAHAM ◽  
JAMES T. BECKER ◽  
JOHN R. HODGES

Current views of long-term memory presume that both the hippocampal complex and the neocortex play interactive, but separate, roles in the storage of memories. While the neocortex is considered the eventual and permanent store for our memories, the encoding of recently experienced events is thought to be initially dependent upon the hippocampus and closely related structures. Neuropsychological studies have demonstrated that damage to the medial temporal lobe results in a retrograde amnesia extending back in time, with better preservation of older memories. The converse pattern has been shown in patients with semantic dementia, who have focal atrophy of the inferolateral temporal neocortex, but relative sparing of the hippocampal complex (Graham & Hodges, 1997). Here we demonstrate that such patients can show relatively preserved new learning on a forced-choice recognition memory test (based on real and chimeric animals), while patients in the early amnestic phase of Alzheimer's disease show severely impaired learning on the same test. This result provides support for the view that new learning is primarily dependent upon the hippocampus and related structures. (JINS, 1997, 3, 534–544.)


Sign in / Sign up

Export Citation Format

Share Document