scholarly journals Temporal induction of Lhx8 by optogenetic control system for efficient bone regeneration

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Delan Huang ◽  
Runze Li ◽  
Jianhan Ren ◽  
Haotian Luo ◽  
Weicai Wang ◽  
...  

Abstract Background The spatiotemporal regulation of essential genes is crucial for controlling the growth and differentiation of cells in a precise manner during regeneration. Recently, optogenetics was considered as a potent technology for sophisticated regulation of target genes, which might be a promising tool for regenerative medicine. In this study, we used an optogenetic control system to precisely regulate the expression of Lhx8 to promote efficient bone regeneration. Methods Quantitative real-time PCR and western blotting were used to detect the expression of Lhx8 and osteogenic marker genes. Alkaline phosphatase staining and alizarin red staining were used to detect alkaline phosphatase activity and calcium nodules. A customized optogenetic expression system was constructed to regulate Lhx8, of which the expression was activated in blue light but not in dark. We also used a critical calvarial defect model for the analysis of bone regeneration in vivo. Moreover, micro-computed tomography (micro-CT), three-dimensional reconstruction, quantitative bone measurement, and histological and immunohistochemistry analysis were performed to investigate the formation of new bone in vivo. Results During the osteogenic differentiation of BMSCs, the expression levels of Lhx8 increased initially but then decreased thereafter. Lhx8 promoted the early proliferation of BMSCs but inhibited subsequent osteogenic differentiation. The optogenetic activation of Lhx8 in BMSCs in the early stages of differentiation by blue light stimulation led to a significant increase in cell proliferation, thus allowing a sufficient number of differentiating BMSCs to enter the later osteogenic differentiation stage. Analysis of the critical calvarial defect model revealed that the pulsed optogenetic activation of Lhx8 in transplanted BMSCs over a 5-day period led to a significant increase in the generation of bone in vivo. Conclusions Lhx8 plays a critical role in balancing proliferation and osteogenic differentiation in BMSCs. The optogenetic activation of Lhx8 expression at early stage of BMSCs differentiation led to better osteogenesis, which would be a promising strategy for precise bone regeneration.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Beom Su Kim ◽  
Feride Shkembi ◽  
Jun Lee

Alendronate (ALN) is a bisphosphonate drug that is widely used for the treatment of osteoporosis. Furthermore, local delivery of ALN has the potential to improve the bone regeneration. This study was designed to investigate an ALN-containing fibrin (fibrin/ALN) gel and evaluate the effect of this gel on both in vitro cellular behavior using human mesenchymal stem cells (hMSCs) and in vivo bone regenerative capacity. Fibrin hydrogels were fabricated using various ALN concentrations (10−7–10−4 M) with fibrin glue and the morphology, mechanical properties, and ALN release kinetics were characterized. Proliferation and osteogenic differentiation of and cytotoxicity in fibrin/ALN gel-embedded hMSCs were examined. In vivo bone formation was evaluated using a rabbit calvarial defect model. The fabricated fibrin/ALN gel was transparent with Young’s modulus of ~13 kPa, and these properties were not affected by ALN concentration. The in vitro studies showed sustained release of ALN from the fibrin gel and revealed that hMSCs cultured in fibrin/ALN gel showed significantly increased proliferation and osteogenic differentiation. In addition, microcomputed tomography and histological analysis revealed that the newly formed bone was significantly enhanced by implantation of fibrin/ALN gel in a calvarial defect model. These results suggest that fibrin/ALN has the potential to improve bone regeneration.


2019 ◽  
Vol 7 (20) ◽  
pp. 3250-3259 ◽  
Author(s):  
Yali Miao ◽  
Yunhua Chen ◽  
Xiao Liu ◽  
Jingjing Diao ◽  
Naru Zhao ◽  
...  

3D-printed β-TCP scaffolds decorated with melatonin via dopamine mussel-inspired chemistry enhance the osteogenesis and in vivo bone regeneration.


Author(s):  
Baoqiang Li ◽  
Lei Wang ◽  
Yu Hao ◽  
Daqing Wei ◽  
Ying Li ◽  
...  

To promote bone regeneration in vivo using critical-size calvarial defect model, hybrid hydrogel was prepared by mixing chitosan with hydroxyapatite (HA) and ultraviolet (UV) irradiation in situ. The hydrosoluble, UV-crosslinkable and injectable N-methacryloyl chitosan (N-MAC) was synthesized via single-step N-acylation reaction. The chemical structure was confirmed by 1H-NMR and FTIR spectroscopy. N-MAC hydrogel presented a microporous structure with pore sizes ranging from 10 to 60 μm. Approximately 80% cell viability of N-MAC hydrogel against encapsulated 3T3 cell indicated that N-MAC is an emerging candidate for mimicking native extracellular matrix (ECM). N-MAC hydrogel hybridized with HA was used to accelerate regeneration of calvarial bone using rabbit model. The effects of hybrid hydrogels to promote bone regeneration were evaluated using critical size calvarial bone defect model. The healing effects of injectable hydrogels with/without HA for bone regeneration were investigated by analyzing X-ray image after 4 or 6 weeks. The results showed that the regenerated new bone for N-MAC 100 was significantly greater than N-MAC without HA and untreated controls. The higher HA content in N-MAC/HA hybrid hydrogel benefited the acceleration of bone regeneration. About 50% closure of defect site after 6 weeks postimplantation demonstrated potent osteoinductivity of N-MAC 100 UV-crosslinkable and injectable N-MAC/HA hybrid hydrogel would allow serving as a promising biomaterial for bone regeneration using the critical-size calvarial defect.


2020 ◽  
Author(s):  
Yi Zhao ◽  
Qiaoli Zhai ◽  
Hong Liu ◽  
Xun Xi ◽  
Shuai Chen ◽  
...  

Abstract BackgroundPeriodontal disease is a common disease that compromises the integrity of tooth-supporting tissues. Bone regeneration is the ultimate goal of periodontal therapies, in which osteogenic differentiation of human periodontal ligament stem cells plays a critical role. The tripartite motif (TRIM)16 is downregulated in periodontal tissues of patients with periodontitis and involved in osteogenic differentiation of human bone marrow mesenchymal stem cells(hBMSCs).However, the role of TRIM16 in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is largely unknown.MethodshPDLSCs were isolated and identified by immunophenotype assays using flow cytometry. Overexpression plasmids and specific short-hairpin RNAs (shRNAs) were constructed to manipulate the expression of target molecules. Alkaline phosphatase (ALP) staining, alizarin red staining (ARS) and enzyme‐linked immunosorbent assays (ELISA) were used to evaluate osteogenic potential capacity. Reverse transcription quantitative PCR (RT-qPCR) and Western blot analysis were performed to determine the expression of osteogenic-related markers and activation of relevant signaling pathways. Co-immunoprecipitation assays were performed to confirm the interactions between proteins and the ubiquitination of RUNX2. A LC-MS/MS analysis was performed to explore the different expression proteins in present of TRIM16.ResultsTRIM16 significantly promoted alkaline phosphatase activity and mineralized nodule formation, and positively regulated the osteogenic differentiation of hPDLSCs by enhancing protein expression of RUNX2, COL1A1 and OCN. Mechanistically, TRIM16 serves as a pivotal factor that stabilizes RUNX2 protein levels by decreasing CHIP-mediated K48-linked ubiquitination degradation of the RUNX2 protein. Besides, TRIM16 significantly increased expression of COL1A1 via activation of p38MAPK/RUNX2.ConclusionThis study identified a novel mechanism of TRIM16 in regulating stability of the RUNX2 protein, which may promote the osteogenic differentiation of hPDLSCs. TRIM16 may be a potential target of stem cell based-bone regeneration for periodontal therapies.


2020 ◽  
Author(s):  
Gang Lei ◽  
Yanqiu Wang ◽  
Yan Yu ◽  
Zehan Li ◽  
Jiamin Lu ◽  
...  

Abstract Background Oral and maxillofacial bone loss is highly prevalent among populations and nowadays increased attention has been focused on dentin derivatives as desirable graft materials for bone regeneration. In this study, dentin-derived inorganic minerals (DIM) were fabricated with a high-temperature calcination technique and the effects of DIM on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMMSCs) and the bone formation were elucidated.Methods The effects of DIM on BMMSCs proliferation, apoptosis capacity were evaluated by CCK-8, flow cytometry and EdU assays. Alkaline phosphatase (ALP) activity detection, ALP staining, alizarin red staining and osteogenic markers expression analysis were performed to investigate the influence of DIM on the osteogenic differentiation of BMMSCs, as well as the relevant signal mechanisms. The model of critical-sized defects in calvarium of rats was constructed for exploring the in vivo efficiency of DIM on bone regeneration.Results Cell viability assays indicated that DIM had no cytotoxicity. BMMSCs cultured with DIM presented a higher level of osteogenic differentiation ability than those in the control group. The activation in ERK and p38 signals was detected in DIM-treated BMMSCs, and both pathways and osteogenic process were suppressed while using ERK inhibitor U0126 and p38 inhibitor SB203580, respectively. Furthermore, the animal experiments revealed that DIM could dramatically enhance new bone formation compared to the control group.Conclusion All these results demonstrated that DIM could promote BMMSCs osteogenic differentiation via triggering ERK and p38 MAPK signaling pathways and be a novel predictable material for facilitating bone formation.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 501 ◽  
Author(s):  
Barbara Siegenthaler ◽  
Chafik Ghayor ◽  
Nisarat Ruangsawasdi ◽  
Franz E. Weber

N,N-Dimethylacetamide (DMA) is FDA approved as an excipient and is used as drug-delivery vehicle. Due to its amphipathic nature and diverse bioactivities, it appears to be a good combination of biodegradable poly-lactide-co-glycolide (PLGA)-based guided bone regeneration membranes. Here we show that the solvent DMA can be loaded to PLGA membranes by different regimes, leading to distinct release profiles, and enhancing the bone regeneration in vivo. Our results highlight the potential therapeutic benefits of DMA in guided bone regeneration procedures, in combination with biodegradable PLGA membranes.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Gang Lei ◽  
Yanqiu Wang ◽  
Yan Yu ◽  
Zehan Li ◽  
Jiamin Lu ◽  
...  

Background. Oral and maxillofacial bone loss is highly prevalent among populations, and nowadays, increased attention has been focused on dentin derivatives serving as desirable graft materials for bone regeneration. In this study, dentin-derived inorganic mineral (DIM) was fabricated with a high-temperature calcination technique and the effects of DIM on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMMSCs) and the bone formation were elucidated. Methods. The effects of DIM on BMMSC proliferation and apoptosis capacity were evaluated by CCK-8, flow cytometry, and EdU assays. Alkaline phosphatase (ALP) activity detection, ALP staining, alizarin red staining, and osteogenic marker expression analysis were performed to investigate the influence of DIM on the osteogenic differentiation of BMMSCs, as well as the relevant signal mechanisms. The model of critical-sized defects in the calvarium of rats was constructed for exploring the in vivo efficiency of DIM on bone regeneration. Results. Cell viability assays indicated that DIM had no cytotoxicity. BMMSCs cultured with DIM presented a higher level of osteogenic differentiation ability than those in the control group. The activation in ERK and p38 signals was detected in DIM-treated BMMSCs, and both pathways and osteogenic process were suppressed while using ERK inhibitor U0126 and p38 inhibitor SB203580, respectively. Furthermore, the animal experiments revealed that DIM could dramatically enhance new bone formation compared to the control group. Conclusion. DIM could promote BMMSC osteogenic differentiation via triggering the ERK and p38 MAPK signaling pathways and might be a novel predictable material for facilitating bone formation.


Author(s):  
Lunhao Li ◽  
Yiyu Peng ◽  
Qingyue Yuan ◽  
Jing Sun ◽  
Ai Zhuang ◽  
...  

Different types of biomaterials have been used to repair the defect of bony orbit. However, exposure and infections are still critical risks in clinical application. Biomaterials with characteristics of osteogenesis and antibiosis are needed for bone regeneration. In this study, we aimed to characterize the antimicrobial effects of cathelicidin-LL37 and to assess any impacts on osteogenic activity. Furthermore, we attempted to demonstrate the feasibility of LL37 as a potential strategy in the reconstruction of clinical bone defects. Human adipose-derived mesenchyme stem cells (hADSCs) were cultured with different concentrations of LL37 and the optimum concentration for osteogenesis was selected for further in vitro studies. We then evaluated the antibiotic properties of LL37 at the optimum osteogenic concentration. Finally, we estimated the efficiency of a PSeD/hADSCs/LL37 combined scaffold on reconstructing bone defects in the rat calvarial defect model. The osteogenic ability on hADSCs in vitro was shown to be dependent on the concentration of LL37 and reached a peak at 4 μg/ml. The optimum concentration of LL37 showed good antimicrobial properties against Escherichia coli and Staphylococcus anurans. The combination scaffold of PSeD/hADSCs/LL37 showed superior osteogenic properties compared to the PSeD/hADSCs, PSeD, and control groups scaffolds, indicating a strong bone reconstruction effect in the rat calvarial bone defect model. In Conclusion, LL37 was shown to promote osteogenic differentiation in vitro as well as antibacterial properties. The combination of PSeD/hADSCs/LL37 was advantageous in the rat calvarial defect reconstruction model, showing high potential in clinical bone regeneration.


2021 ◽  
Vol 22 (23) ◽  
pp. 13016
Author(s):  
Thanuja D. K. Herath ◽  
Leonardo Saigo ◽  
Benoit Schaller ◽  
Anis Larbi ◽  
Swee Hin Teoh ◽  
...  

Reconstruction of bone due to surgical removal or disease-related bony defects is a clinical challenge. It is known that the immune system exerts positive immunomodulatory effects on tissue repair and regeneration. In this study, we evaluated the in vivo efficacy of autologous neutrophils on bone regeneration using a rabbit calvarial defect model. Methods: Twelve rabbits, each with two surgically created calvarial bone defects (10 mm diameter), were randomly divided into two groups; (i) single application of neutrophils (SA-NP) vs. SA-NP control, and (ii) repetitive application of neutrophils (RA-NP) vs. RA-NP control. The animals were euthanized at 4 and 8 weeks post-operatively and the treatment outcomes were evaluated by micro-computed tomography, histology, and histomorphometric analyses. Results: The micro-CT analysis showed a significantly higher bone volume fraction (bone volume/total volume) in the neutrophil-treated groups, i.e., median interquartile range (IQR) SA-NP (18) and RA-NP (24), compared with the untreated controls, i.e., SA-NP (7) and RA-NP (14) at 4 weeks (p < 0.05). Similarly, new bone area fraction (bone area/total area) was significantly higher in neutrophil-treated groups at 4 weeks (p < 0.05). Both SA-NP and RA-NP had a considerably higher bone volume and bone area at 8 weeks, although the difference was not statistically significant. In addition, immunohistochemical analysis at 8 weeks revealed a higher expression of osteocalcin in both SA-NP and RA-NP groups. Conclusions: The present study provides first hand evidence that autologous neutrophils may have a positive effect on promoting new bone formation. Future studies should be performed with a larger sample size in non-human primate models. If proven feasible, this new promising strategy could bring clinical benefits for bone defects to the field of oral and maxillofacial surgery.


Sign in / Sign up

Export Citation Format

Share Document