scholarly journals Neural stem cells derived from primitive mesenchymal stem cells reversed disease symptoms and promoted neurogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christina Brown ◽  
Christina McKee ◽  
Sophia Halassy ◽  
Suleiman Kojan ◽  
Doug L. Feinstein ◽  
...  

Abstract Background Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). MS affects millions of people and causes a great economic and societal burden. There is no cure for MS. We used a novel approach to investigate the therapeutic potential of neural stem cells (NSCs) derived from human primitive mesenchymal stem cells (MSCs) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Methods MSCs were differentiated into NSCs, labeled with PKH26, and injected into the tail vein of EAE mice. Neurobehavioral changes in the mice assessed the effect of transplanted cells on the disease process. The animals were sacrificed two weeks following cell transplantation to collect blood, lymphatic, and CNS tissues for analysis. Transplanted cells were tracked in various tissues by flow cytometry. Immune infiltrates were determined and characterized by H&E and immunohistochemical staining, respectively. Levels of immune regulatory cells, Treg and Th17, were analyzed by flow cytometry. Myelination was determined by Luxol fast blue staining and immunostaining. In vivo fate of transplanted cells and expression of inflammation, astrogliosis, myelination, neural, neuroprotection, and neurogenesis markers were investigated by using immunohistochemical and qRT-PCR analysis. Results MSC-derived NSCs expressed specific neural markers, NESTIN, TUJ1, VIMENTIN, and PAX6. NSCs improved EAE symptoms more than MSCs when transplanted in EAE mice. Post-transplantation analyses also showed homing of MSCs and NSCs into the CNS with concomitant induction of an anti-inflammatory response, resulting in reducing immune infiltrates. NSCs also modulated Treg and Th17 cell levels in EAE mice comparable to healthy controls. Luxol fast blue staining showed significant improvement in myelination in treated mice. Further analysis showed that NSCs upregulated genes involved in myelination and neuroprotection but downregulated inflammatory and astrogliosis genes more significantly than MSCs. Importantly, NSCs differentiated into neural derivatives and promoted neurogenesis, possibly by modulating BDNF and FGF signaling pathways. Conclusions NSC transplantation reversed the disease process by inducing an anti-inflammatory response and promoting myelination, neuroprotection, and neurogenesis in EAE disease animals. These promising results provide a basis for clinical studies to treat MS using NSCs derived from primitive MSCs.

2021 ◽  
Author(s):  
Christina Brown ◽  
Christina McKee ◽  
Sophia Halassy ◽  
Suleiman Kojan ◽  
Doug L. Feinstein ◽  
...  

Abstract BackgroundMultiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). MS affects millions of people and causes a great economic and societal burden. There is no cure for MS. We used a novel approach to investigate the therapeutic potential of neural stem cells (NSCs) derived from highly proliferative human primitive mesenchymal stem cells (MSCs) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS.MethodsMSCs were differentiated into NSCs, labeled with PKH26 and injected into the tail vein of EAE mice. The effect of transplanted cells on the disease process was assessed by neurobehavioral changes in the mice. Two weeks following cell transplantation, the animals were sacrificed to collect blood, lymphatic, and CNS tissues for analysis. Transplanted cells were tracked in various tissues by flow cytometry. Immune infiltrates were determined and characterized by H&E and immunohistochemical staining, respectively. Levels of immune regulatory cells, Treg and Th17 were analyzed by flow cytometry. Myelination was determined by Luxol fast blue staining and immunostaining. In vivo fate of transplanted cells and expression of inflammation, astrogliosis, myelination, neural, neuroprotection, and neurogenesis markers were investigated by using immunohistochemical and qRT-PCR analysis. ResultsMSC derived NSCs expressed specific neural markers, NESTIN, TUJ1, VIMENTIN and PAX6. NSCs improved EAE symptoms more than MSCs when transplanted in EAE mice. Post-transplantation analyses also showed homing of MSCs and NSCs into the CNS with concomitant induction of anti-inflammatory response resulting in reduction of immune infiltrates. NSCs also modulated Treg and Th17 cell levels in EAE mice comparable to healthy controls. Luxol fast blue staining showed significant improvement in myelination in treated mice. Further analysis showed that NSCs upregulated genes involved in myelination and neuroprotection but downregulated inflammatory and astrogliosis genes more significantly than MSCs. Importantly, NSCs differentiated into neural derivatives in the CNS and promoted neurogenesis possibly by modulating BDNF and FGF signaling pathways. ConclusionsNSC transplantation reversed the disease process by inducing an anti-inflammatory response and promoting myelination, neuroprotection, and neurogenesis in EAE disease animals. These promising results provide basis for clinical studies to treat MS using NSCs derived from primitive MSCs.


2021 ◽  
Author(s):  
Christina Brown ◽  
Christina McKee ◽  
Sophia Halassy ◽  
Suleiman Kojan ◽  
Douglas Feinstein ◽  
...  

Abstract Background Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). MS affects millions of people and causes a great economic and societal burden. Currently used treatment drugs have side effects and only address the symptoms but not the causes of MS. In this study, a novel approach of transplanting neural stem cells (NSCs) derived from human primitive mesenchymal stem cells (MSCs) was investigated in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Methods Primitive MSCs were differentiated into NSCs using selective media. The cells were labeled with PKH26 and injected into the tail vein of EAE mice. The animals were evaluated for changes in neurobehavior and weight twice daily. Two weeks following cell transplantation, the animals were sacrificed to collect the blood, lymphatic and CNS tissues for analysis. FACS analysis was used to track labeled cells and infiltrates. Histochemical analysis was performed to determine the levels of myelination. Expression of inflammation, neural, astrogliosis, neuroprotection, and myelination markers was investigated by using immunohistochemical and qRT-PCR analyses. Results Neurobehavioral assays showed that EAE disease process was halted by transplantation of both MSCs and NSCs. However, NSCs showed greater efficacy in reversing the disease symptoms, which resulted in near complete recovery of EAE animals. Post-transplantation analyses also showed homing of transplanted cells into the CNS with concomitant induction of anti-inflammatory response resulting in reduction of immune infiltrates. Luxol fast blue staining intensity of CNS tissues was significantly improved in treated mice as compared to EAE animals, suggesting endogenous remyelination. NSC transplantation also modulated Treg and Th17 cells in EAE mice to levels comparable to healthy controls. In addition, several of the markers associated with neuroprotection (i.e. Igf, Bdnf, and Trkb), myelination (i.e. Erk2, Krox-20, Oct-6, Mpz, Mbp, and Mog) and neurogenesis (i.e. Tuj1 and Nestin) were upregulated, suggesting endogenous regeneration in treated animals. Conclusions Cell transplantation was more effective at an earlier point of EAE disease (EAE stage 1) than later (EAE stage 2). These promising results provide basis for large-scale clinical studies to treat MS using NSCs derived from primitive MSCs.


2020 ◽  
Vol 31 (2) ◽  
pp. 161-179 ◽  
Author(s):  
Ahmed Lotfy ◽  
Nourhan S. Ali ◽  
Mai Abdelgawad ◽  
Mohamed Salama

AbstractMultiple sclerosis (MS) is a progressive and debilitating neurological condition in which the immune system abnormally attacks the myelin sheath insulating the nerves. Mesenchymal stem cells (MSCs) are found in most adult tissues and play a significant systemic role in self-repair. MSCs have promising therapeutic effects in many diseases, such as autoimmune diseases, including MS. MSCs have been tested in MS animal models, such as experimental autoimmune encephalomyelitis. Other studies have combined other agents with MSCs, genetically modified MSCs, or used culture medium from MSCs. In this review, we will summarize these studies and compare the main factors in each study, such as the source of MSCs, the type of animal model, the route of injection, the number of injected cells, and the mechanism of action.


2008 ◽  
Vol 65 (6) ◽  
Author(s):  
Ibrahim Kassis ◽  
Nikolaos Grigoriadis ◽  
Basan Gowda-Kurkalli ◽  
Rachel Mizrachi-Kol ◽  
Tamir Ben-Hur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document