scholarly journals Unfolded protein response in colorectal cancer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingjing Huang ◽  
Huayang Pan ◽  
Jinge Wang ◽  
Tong Wang ◽  
Xiaoyan Huo ◽  
...  

AbstractColorectal cancer (CRC) is a gastrointestinal malignancy originating from either the colon or the rectum. A growing number of researches prove that the unfolded protein response (UPR) is closely related to the occurrence and progression of colorectal cancer. The UPR has three canonical endoplasmic reticulum (ER) transmembrane protein sensors: inositol requiring kinase 1 (IRE1), pancreatic ER eIF2α kinase (PERK), and activating transcription factor 6 (ATF6). Each of the three pathways is closely associated with CRC development. The three pathways are relatively independent as well as interrelated. Under ER stress, the activated UPR boosts the protein folding capacity to maximize cell adaptation and survival, whereas sustained or excessive ER triggers cell apoptosis conversely. The UPR involves different stages of CRC pathogenesis, promotes or hinders the progression of CRC, and will pave the way for novel therapeutic and diagnostic approaches. Meanwhile, the correlation between different signal branches in UPR and the switch between the adaptation and apoptosis pathways still need to be further investigated in the future.

2021 ◽  
Vol 22 (13) ◽  
pp. 7114
Author(s):  
Ahmad Zulkifli ◽  
Fiona H. Tan ◽  
Zammam Areeb ◽  
Sarah F. Stuart ◽  
Juliana Gomez ◽  
...  

Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines. These cetuximab-resistant cells display greater in vitro proliferation, colony formation and migration, and in vivo tumour growth compared with their parental counterparts. To evaluate potential alternative therapeutics to cetuximab-acquired-resistant cells, we tested the efficacy of 38 current FDA-approved agents against our cetuximab-acquired-resistant clones. We identified carfilzomib, a selective proteosome inhibitor to be most effective against our cell lines. Carfilzomib displayed potent antiproliferative effects, induced the unfolded protein response as determined by enhanced CHOP expression and ATF6 activity, and enhanced apoptosis as determined by enhanced caspase-3/7 activity. Overall, our results indicate a potentially novel indication for carfilzomib: that of a potential alternative agent to treat cetuximab-resistant colorectal cancer.


2021 ◽  
Author(s):  
Christopher J Fields ◽  
Lu Li ◽  
Nicholas M Hiers ◽  
Tianqi Li ◽  
Peike Sheng ◽  
...  

MicroRNAs (miRNA) are short non-coding RNAs widely implicated in gene regulation. Most metazoan miRNAs utilize the RNase III enzymes Drosha and Dicer for biogenesis. One notable exception is the RNA polymerase II transcription start sites (TSS) miRNAs whose biogenesis does not require Drosha. The functional importance of the TSS-miRNA biogenesis is uncertain. To better understand the function of TSS-miRNAs, we applied a modified Crosslinking, Ligation, and Sequencing of Hybrids on Argonaute (AGO-qCLASH) to identify the targets for TSS-miRNAs in HCT116 colorectal cancer cells with or without DROSHA knockout. We observed that miR-320a hybrids dominate in TSS-miRNA hybrids identified by AGO-qCLASH. Targets for miR-320a are enriched in the eIF2 signaling pathway, a downstream component of the unfolded protein response. Consistently, in miR-320a mimic- and antagomir- transfected cells, differentially expressed genes are enriched in eIF2 signaling. Within the AGO-qCLASH data, we identified the endoplasmic reticulum (ER) chaperone Calnexin as a direct miR-320a target, thus connecting miR-320a to the unfolded protein response. During ER stress, but not amino acid deprivation, miR-320a up-regulates ATF4, a critical transcription factor for resolving ER stress. Our study investigates the targetome of the TSS-miRNAs in colorectal cancer cells and establishes miR-320a as a regulator of unfolded protein response.


2013 ◽  
Vol 133 (6) ◽  
pp. 1408-1418 ◽  
Author(s):  
Michael Thornton ◽  
Mohammed A. Aslam ◽  
Elizabeth M. Tweedle ◽  
Chin Ang ◽  
Fiona Campbell ◽  
...  

1998 ◽  
Vol 18 (4) ◽  
pp. 1967-1977 ◽  
Author(s):  
Ajith A. Welihinda ◽  
Witoon Tirasophon ◽  
Sarah R. Green ◽  
Randal J. Kaufman

ABSTRACT Cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing the transcription of the genes encoding ER-resident chaperone proteins. Ire1p is a transmembrane protein kinase that transmits the signal from unfolded proteins in the lumen of the ER by a mechanism that requires oligomerization andtrans-autophosphorylation of its cytoplasmic-nucleoplasmic kinase domain. Activation of Ire1p induces a novel spliced form ofHAC1 mRNA that produces Hac1p, a transcription factor that is required for activation of the transcription of genes under the control of the unfolded-protein response (UPR) element. Searching for proteins that interact with Ire1p in Saccharomyces cerevisiae, we isolated PTC2, which encodes a serine/threonine phosphatase of type 2C. The Ptc2p interaction with Ire1p is specific, direct, dependent on Ire1p phosphorylation, and mediated through a kinase interaction domain within Ptc2p. Ptc2p dephosphorylates Ire1p efficiently in an Mg2+-dependent manner in vitro. PTC2 is nonessential for growth and negatively regulates the UPR pathway. Strains carrying null alleles ofPTC2 have a three- to fourfold-increased UPR and increased levels of spliced HAC1 mRNA. Overexpression of wild-type Ptc2p but not catalytically inactive Ptc2p reduces levels of splicedHAC1 mRNA and attenuates the UPR, demonstrating that the phosphatase activity of Ptc2p is required for regulation of the UPR. These results demonstrate that Ptc2p downregulates the UPR by dephosphorylating Ire1p and reveal a novel mechanism of regulation in the UPR pathway upstream of the HAC1 mRNA splicing event.


Oncogene ◽  
2018 ◽  
Vol 38 (6) ◽  
pp. 794-807 ◽  
Author(s):  
Tammi Arbel Rubinstein ◽  
Shiri Shahmoon ◽  
Ehud Zigmond ◽  
Tal Etan ◽  
Keren Merenbakh-Lamin ◽  
...  

2016 ◽  
Vol 311 (4) ◽  
pp. G599-G609 ◽  
Author(s):  
Wilhelmus J. Kwanten ◽  
Yves-Paul Vandewynckel ◽  
Wim Martinet ◽  
Benedicte Y. De Winter ◽  
Peter P. Michielsen ◽  
...  

Autophagy and the unfolded protein response (UPR) are key cellular homeostatic mechanisms and are both involved in liver diseases, including nonalcoholic fatty liver disease (NAFLD). Although increasing but conflicting results link these mechanisms to lipid metabolism, their role and potential cross talk herein have been poorly investigated. Therefore, we assessed the effects of hepatocyte-specific autophagy deficiency on liver parenchyma, the UPR, and lipid metabolism. Adult hepatocellular-specific autophagy-deficient mice ( Atg7F/FAlb-Cre+) were compared with their autophagy-competent littermates ( Atg7+/+Alb-Cre+). Livers were analyzed by electron microscopy, histology, real-time qPCR, and Western blotting. Atg7F/FAlb-Cre+mice developed hepatomegaly with significant parenchymal injury, as shown by inflammatory infiltrates, hepatocellular apoptosis, pericellular fibrosis, and a pronounced ductular reaction. Surprisingly, the UPR exhibited a pathway-selective pattern upon autophagy deficiency. The activity of the adaptive activating transcription factor 6 (ATF6) pathway was abolished, whereas the proapoptotic protein kinase RNA-like ER kinase pathway was increased compared with Atg7+/+Alb-Cre+mice. The inositol-requiring enzyme-1α signal was unaltered. Fasting-induced steatosis was absent in Atg7F/FAlb-Cre+mice. Remarkably, some isolated islands of fat-containing and autophagy-competent cells were observed in these livers. Hepatocellular autophagy is essential for parenchymal integrity in mice. Moreover, in the case of autophagy deficiency, the three different UPR branches are pathway selectively modulated. Attenuation of the ATF6 pathway might explain the observed impairment of fasting-induced steatosis. Finally, autophagy and lipid droplets are directly linked to each other.


Autophagy ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 781-819 ◽  
Author(s):  
Pooneh Mokarram ◽  
Mohammed Albokashy ◽  
Maryam Zarghooni ◽  
Mohammad Amin Moosavi ◽  
Zahra Sepehri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document