scholarly journals A mathematical analysis of Hopf-bifurcation in a prey-predator model with nonlinear functional response

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Assane Savadogo ◽  
Boureima Sangaré ◽  
Hamidou Ouedraogo

AbstractIn this paper, our aim is mathematical analysis and numerical simulation of a prey-predator model to describe the effect of predation between prey and predator with nonlinear functional response. First, we develop results concerning the boundedness, the existence and uniqueness of the solution. Furthermore, the Lyapunov principle and the Routh–Hurwitz criterion are applied to study respectively the local and global stability results. We also establish the Hopf-bifurcation to show the existence of a branch of nontrivial periodic solutions. Finally, numerical simulations have been accomplished to validate our analytical findings.

Author(s):  
Wensheng Yang

In this work, we consider a three species modified Lesie-Gower food web model with general  nonlinear functional response and omnivory which is defined as feeding on more than one trophic level. The carrying capacity of the model is proportional to the population size of the biotic resource plus a const. The main objective of this paper is to investigate the existence and  uniqueness of the solution of this model. It is shown that the omnivory has important influence on the existence and uniqueness of the solution of the model.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769006 ◽  
Author(s):  
Devendra Kumar ◽  
Jagdev Singh ◽  
Maysaa Al Qurashi ◽  
Dumitru Baleanu

In this work, we aim to analyze the logistic equation with a new derivative of fractional order termed in Caputo–Fabrizio sense. The logistic equation describes the population growth of species. The existence of the solution is shown with the help of the fixed-point theory. A deep analysis of the existence and uniqueness of the solution is discussed. The numerical simulation is conducted with the help of the iterative technique. Some numerical simulations are also given graphically to observe the effects of the fractional order derivative on the growth of population.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Uttam Das ◽  
T. K. Kar

This paper tries to highlight a delayed prey-predator model with Holling type III functional response and harvesting to predator species. In this context, we have discussed local stability of the equilibria, and the occurrence of Hopf bifurcation of the system is examined by considering the harvesting effort as bifurcation parameter along with the influences of harvesting effort of the system when time delay is zero. Direction of Hopf bifurcation and the stability of bifurcating periodic solutions are also studied by applying the normal form theory and the center manifold theorem. Lastly some numerical simulations are carried out to draw for the validity of the theoretical results.


Axioms ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 122
Author(s):  
Hasan S. Panigoro ◽  
Agus Suryanto ◽  
Wuryansari Muharini Kusumawinahyu ◽  
Isnani Darti

The harvesting management is developed to protect the biological resources from over-exploitation such as harvesting and trapping. In this article, we consider a predator–prey interaction that follows the fractional-order Rosenzweig–MacArthur model where the predator is harvested obeying a threshold harvesting policy (THP). The THP is applied to maintain the existence of the population in the prey–predator mechanism. We first consider the Rosenzweig–MacArthur model using the Caputo fractional-order derivative (that is, the operator with the power-law kernel) and perform some dynamical analysis such as the existence and uniqueness, non-negativity, boundedness, local stability, global stability, and the existence of Hopf bifurcation. We then reconsider the same model involving the Atangana–Baleanu fractional derivative with the Mittag–Leffler kernel in the Caputo sense (ABC). The existence and uniqueness of the solution of the model with ABC operator are established. We also explore the dynamics of the model with both fractional derivative operators numerically and confirm the theoretical findings. In particular, it is shown that models with both Caputo operator and ABC operator undergo a Hopf bifurcation that can be controlled by the conversion rate of consumed prey into the predator birth rate or by the order of fractional derivative. However, the bifurcation point of the model with the Caputo operator is different from that of the model with the ABC operator.


2020 ◽  
Vol 1 (2) ◽  
pp. 65-70
Author(s):  
Dian Savitri ◽  
Hasan S. Panigoro

This article discusses the one-prey, one-predator, and the super predator model with different types of functional response. The rate of prey consumption by the predator follows Holling type I functional response and the rate of predator consumption by the super predator follows Holling type II functional response. We identify the existence and stability of critical points and obtain that the extinction of all population points is always unstable, and the other two are conditionally stable i.e., the super predator extinction point and the co-existence point. Furthermore, we give the numerical simulations to describe the bifurcation diagram and phase portraits of the model. The bifurcation diagram is obtained by varying the parameter of the conversion rate of predator biomass into a new super-predator which gives forward and Hopf bifurcation. The forward bifurcation occurs around the super predator extinction point while Hopf bifurcation occurs around the interior of the model. Based on the terms of existence and numerical simulation, we confirm that the conversion rate of predator biomass into a new super-predator controls the dynamics of the system and maintains the existence of predator.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 57 ◽  
Author(s):  
Carlo Bianca ◽  
Marco Menale

This paper deals with the mathematical analysis of a thermostatted kinetic theory equation. Specifically, the assumption on the domain of the activity variable is relaxed allowing for the discrete activity to attain real values. The existence and uniqueness of the solution of the related Cauchy problem and of the related non-equilibrium stationary state are established, generalizing the existing results.


Sign in / Sign up

Export Citation Format

Share Document