scholarly journals What evidence exists related to soil retention of phosphorus from on-site wastewater treatment systems in boreal and temperate climate zones? A systematic map protocol

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Ida Envall ◽  
Fritjof Fagerlund ◽  
Lena Johansson Westholm ◽  
Charlotte Åberg ◽  
Arvid Bring ◽  
...  

Abstract Background Soil-based on-site wastewater treatment systems (OWSs) are suspected to contribute to eutrophication of surface waters, due to the discharge of phosphorus (P). However, along the flow path between the facilities and surface waters, different processes contribute to delay the transport of phosphorus through the ground. This may reduce the unwanted impact on receiving water bodies. However, the strength and significance of this so-called soil retention remains unclear. In Sweden, there are nearly one million OWSs. To protect surface waters, a high P removal rate (up to 90%) is often required by the local municipalities. However, since these requirements may have costly consequences to property owners, it is debated as to whether they are too strict. In this debate, it is often claimed that the retention of P occurring in natural environments may be underestimated by authorities. Accordingly, there is a need for a scrutiny of the available evidence related to soil retention of phosphorus from OWSs. This is the objective of the planned systematic map. Focus will be on boreal and temperate climate zones. Methods Searches will be made for peer-reviewed articles and grey literature using bibliographic databases, search engines, specialist websites and stakeholder contacts. The references will be screened for relevance according to a predefined set of eligibility criteria. At stage one, after testing and clarifying the eligibility criteria, the references will be single-screened based on title and abstract. At stage two, potentially relevant references will be screened in full-text independently by two reviewers. We will compile a detailed database of the relevant studies. Moreover, a narrative report will be produced, describing the research landscape in general terms. This will be carried out with a conceptual model, describing the processes involved in P retention in natural environments, as a foundation. It will be discussed where the respective studies/study types fit into the conceptual model, and also evaluated how each study/study type can be related to the overarching question of eutrophication. Moreover, we will describe identified knowledge gaps that warrant further primary research effort, as well as identified knowledge clusters that could be suitable for systematic reviews.

1989 ◽  
Vol 24 (3) ◽  
pp. 463-477
Author(s):  
Stephen G. Nutt

Abstract Based on discussions in workshop sessions, several recurring themes became evident with respect to the optimization and control of petroleum refinery wastewater treatment systems to achieve effective removal of toxic contaminants. It was apparent that statistical process control (SPC) techniques are finding more widespread use and have been found to be effective. However, the implementation of real-time process control strategies in petroleum refinery wastewater treatment systems is in its infancy. Considerable effort will need to be expended to demonstrate the practicality of on-line sensors, and the utility of automated process control in petroleum refinery wastewater treatment systems. This paper provides a summary of the discussions held at the workshop.


1996 ◽  
Vol 33 (7) ◽  
pp. 165-171 ◽  
Author(s):  
J. Soares ◽  
S. A. Silva ◽  
R. de Oliveira ◽  
A. L. C. Araujo ◽  
D. D. Mara ◽  
...  

Ammonia removal was monitored in a waste stabilisation pond complex comprising ponds of different geometries and depths under two different operational regimes. It was found that a high degree of ammonia removal commenced in the secondary maturation ponds, with the highest removals occurring in the shallowest ponds as a consequence of improved aerobic conditions. The tertiary maturation ponds produced effluents with mean ammonia concentrations of < 5 mg N/l, the maximum permitted recommended by Brazilian environmental legislation for the discharge of effluents of wastewater treatment plants into surface waters. Ammonia removal in the secondary facultative and maturation ponds could be modelled using equations based on the volatilization mechanism proposed by Middlebrooks et al. (1982).


1996 ◽  
Vol 34 (3-4) ◽  
pp. 405-412 ◽  
Author(s):  
Andrea Deininger ◽  
Frank W. Günthert ◽  
Peter A. Wilderer

Density currents in the deeper zones of clarifiers and currents in the clear water zone have a significant influence on clarifier performance. Measurements of flow velocity profiles were conducted in full-scale horizontally flown circular secondary clarifiers. Relations between the hydraulic load and the development of density currents could be detected. Those patterns are not taken into account in current design procedures. Stationary design approaches are mainly based on the overflow rate. Novel design methods based on the dynamic behavior of flow and density distribution in clarifiers are needed in order to improve the efficacy of wastewater treatment systems.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Agata Keller ◽  
Somsubhra Chattopadhyay ◽  
Mikołaj Piniewski

Abstract Background Flow variability is considered a fundamental factor affecting riverine biota. Any alterations to flow regime can influence freshwater organisms, and this process is expected to change with the projected climate change. This systematic map, therefore, aims at investigating the impacts of natural (resulting from climatic variability), anthropogenic (resulting from direct human pressure), and climate change-induced flow variability on fish and macroinvertebrates of temperate floodplain rivers in Central and Western Europe. Particular focus will be placed on the effects of extreme low and high discharges. These rare events are known to regulate population size and taxonomic diversity. Methods All studies investigating the effects of flow variability on metrics concerning freshwater fish and macroinvertebrates will be considered in the map, particularly metrics such as: abundance, density, diversity, growth, migration, recruitment, reproduction, survival, or their substitutes, such as biomonitoring indices. Relevant flow variability will reflect (1) anthropogenic causes: dams, reservoirs, hydroelectric facilities, locks, levees, water abstraction, water diversion, land-use changes, road culverts; (2) natural causes: floods, droughts, seasonal changes; or (3) climate change. Geographically, the map will cover the ecoregion of Central and Western Europe, focusing on its major habitat type, namely “temperate floodplain rivers and wetlands”. The review will employ search engines and specialist websites, and cover primary and grey literature. No date, language, or document type restrictions will be applied in the search strategy. We expect the results to be primarily in English, although evidence (meeting all eligibility criteria) from other languages within the study area will also be included. We will also contact relevant stakeholders and announce an open call for additional information. Eligibility screening will be conducted at two levels: title and abstract, and full text. From eligible studies the following information will be extracted: the cause of flow variability, location, type of study, outcomes, etc. A searchable database containing extracted data will be developed and provided as supplementary material to the map report. The final narrative will describe the quantity and key characteristics of the available evidence, and identify knowledge gaps and knowledge clusters, i.e. subtopics sufficiently covered by existing studies allowing full systematic review and meta-analysis.


Sign in / Sign up

Export Citation Format

Share Document