scholarly journals Collagenous Alzheimer amyloid plaque component impacts on the compaction of amyloid-β plaques

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Tadafumi Hashimoto ◽  
Daisuke Fujii ◽  
Yasushi Naka ◽  
Mayu Kashiwagi-Hakozaki ◽  
Yuko Matsuo ◽  
...  

AbstractMassive deposition of amyloid β peptides (Aβ) as senile plaques (SP) characterizes the brain pathology of Alzheimer’s disease (AD). SPs exhibit a variety of morphologies, although little is known about the SP components that determine their morphology. Collagenous Alzheimer amyloid plaque component (CLAC) is one of the major non-Aβ proteinaceous components of SP amyloid in AD brains. Here we show that overexpression of CLAC precursor (CLAC-P) in the brains of APP transgenic mice results in a significant remodeling of amyloid pathology, i.e., reduction in diffuse-type amyloid plaques and an increase in compact plaques laden with thioflavin S-positive amyloid cores. In vivo microdialysis revealed a significant decrease in Aβ in the brain interstitial fluid of CLAC-P/APP double transgenic mice compared with APP transgenic mice. These findings implicate CLAC in the compaction of Aβ in amyloid plaques and the brain dynamics of Aβ.

2004 ◽  
Vol 279 (50) ◽  
pp. 52535-52542 ◽  
Author(s):  
Matthew J. Chiocco ◽  
Laura Shapiro Kulnane ◽  
Linda Younkin ◽  
Steve Younkin ◽  
Geneviève Evin ◽  
...  

Amyloid-β (Aβ) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by β-secretase followed by γ-secretase cleavage. Identification of the primary β-secretase gene,BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Aβ metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating β-secretase expression and activity alters APP processing and Aβ metabolismin vivo. Genomic-basedBACE1transgenic mice were generated that overexpress humanBACE1mRNA and protein. The highest expressingBACE1transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing bothBACE1andAPPshow specific alterations in APP processing and age-dependent Aβ deposition. We observed elevated levels of Aβ isoforms as well as significant increases of Aβ deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for β-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation ofBACE1activity may play a significant role in AD pathogenesisin vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jisu Shin ◽  
Sohui Park ◽  
HeeYang Lee ◽  
YoungSoo Kim

AbstractTransgenic mouse models recapitulating Alzheimer’s disease (AD) pathology are pivotal in molecular studies and drug evaluation. In transgenic models selectively expressing amyloid-β (Aβ), thioflavin S (ThS), a fluorescent dye with β-sheet binding properties, is widely employed to observe amyloid plaque accumulation. In this study, we investigated the possibility that a commonly used Aβ-expressing AD model mouse, 5XFAD, generates ThS-positive aggregates of β-sheet structures in addition to Aβ fibrils. To test this hypothesis, brain sections of male and female 5XFAD mice were double-stained with ThS and monoclonal antibodies against Aβ, tau, or α-synuclein, all of which aggregates are detected by ThS. Our results revealed that, in addition to amyloid plaques, 5XFAD mice express ThS-positive phospho-tau (p-tau) aggregates. Upon administration of a small molecule that exclusively disaggregates Aβ to 5XFAD mice for six weeks, we found that the reduction level of plaques was smaller in brain sections stained by ThS compared to an anti-Aβ antibody. Our findings implicate that the use of ThS complicates the quantification of amyloid plaques and the assessment of Aβ-targeting drugs in 5XFAD mice.


2020 ◽  
Author(s):  
Erica Barini ◽  
Gudrun Plotzky ◽  
Yulia Mordashova ◽  
Jonas Hoppe ◽  
Esther Rodriguez-Correa ◽  
...  

SUMMARYIn Alzheimer disease, Tau pathology is thought to propagate from cell to cell throughout interconnected brain areas. However, the forms of Tau released into the brain interstitial fluid (ISF) in vivo during the development of Tauopathy and their pathological relevance remain unclear. Combining in vivo microdialysis and biochemical analysis, we find that human Tau (hTau) present in brain ISF is truncated and comprises at least 10 distinct fragments spanning the entire Tau protein. The fragmentation pattern is similar across different Tau transgenic models, pathological stages and brain areas. ISF hTau concentration decreases during Tauopathy progression, while its phosphorylation increases. ISF from mice with established Tauopathy induces Tau aggregation in HEK293-Tau biosensor cells and notably, only a small fraction of Tau, separated by ultracentrifugation, is seeding competent. These results indicate that only a subset of Tau accounts for ISF seeding competence and have the potential to contribute to the propagation of Tau pathology.Graphical abstractHighlights✓In transgenic mice, interstitial fluid comprises several Tau fragments spanning the entire Tau sequence.✓Interstitial fluid Tau concentration decreases with Tauopathy progression, while phosphorylation increases.✓Only interstitial fluid from mice with established Tauopathy is seeding competent in vitro.✓Interstitial fluid seeding competence is driven by less soluble, aggregated and phosphorylated Tau species.In BriefBarini et al. show that in the brain interstitial fluid of Tau transgenic mice, truncated Tau decreases, while its phosphorylation increases during the progression of pathology. A subset of less soluble, aggregated and phosphorylated ISF Tau induces Tau aggregation in cells.


2020 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Deregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers, crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: The plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a familial mouse model of familial AD (5xFAD). Ten weeks after transduction animal were challenged with behavior tests for memory, anxiety and locomotion. At week twelve brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male transgenic mice, modelling familial AD (5xFAD). CERTL in vivo over-expression has a mild effect on animal locomotion and decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Simone M. Crivelli ◽  
Qian Luo ◽  
Jo A.A. Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain. Methods A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno-associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety, and locomotion. At week 12, brains were investigated for sphingolipid levels by mass spectrometry, plaques, and neuroinflammation by immunohistochemistry, gene expression, and/or immunoassay. Results Here, we report that CERTL binds to APP, modifies Aβ aggregation, and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation, and modulates microglia by decreasing their pro-inflammatory phenotype. Conclusion Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2021 ◽  
Author(s):  
Christiana Bjorkli ◽  
Claire Louet ◽  
Trude Helen Flo ◽  
Mary Hemler ◽  
Axel Sandvig ◽  
...  

Abstract BackgroundPreclinical models of Alzheimer’s disease (AD) can provide valuable insights into the onset and progression of the disease, such as changes in concentrations of amyloid-β (Aβ) and tau in cerebrospinal fluid (CSF). However, such models are currently underutilized due to limited advancement in techniques that allow for longitudinal monitoring of CSF akin to methods employed in AD patients. An elegant way to understand the biochemical environment in the diseased brain is intracerebral microdialysis, a method that has until now been limited to short-term observations, or snapshots, of the brain microenvironment. ResultsOur novel push-pull microdialysis method in AD mice permits in vivo longitudinal monitoring of dynamic changes of Aβ and tau in CSF and allows for better translational understanding of CSF biomarkers. Specifically, we demonstrate that CSF concentrations of Aβ and tau along disease progression in transgenic mice mirror what is observed in patients, with a decrease in CSF Aβ observed when plaques are deposited, and an increase in CSF tau once tau pathology is present in the brain. We found that a high molecular weight cut-off membrane allowed for simultaneous sampling of Aβ and tau, comparable to lumbar puncture CSF collection in patients. We furthermore provide specific recommendations for optimal application of our novel microdialysis method, such as achieving optimal recovery of analytes, which depends heavily on the flow rate of perfusion, probe properties and perfusate composition. ConclusionsOur approach can further advance AD research by following evolving neuropathology along the disease cascade via consecutive sampling from the same animal, and can additionally be used to administer pharmaceutical compounds and assess their efficacy in treating AD.


2021 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo A.A. Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety and locomotion. At week twelve, brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Aleksandra M. Wojtas ◽  
Jonathon P. Sens ◽  
Silvia S. Kang ◽  
Kelsey E. Baker ◽  
Taylor J. Berry ◽  
...  

Abstract Background Accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer’s disease (AD). The clusterin (CLU) gene confers a risk for AD and CLU is highly upregulated in AD patients, with the common non-coding, protective CLU variants associated with increased expression. Although there is strong evidence implicating CLU in amyloid metabolism, the exact mechanism underlying the CLU involvement in AD is not fully understood or whether physiologic alterations of CLU levels in the brain would be protective. Results We used a gene delivery approach to overexpress CLU in astrocytes, the major source of CLU expression in the brain. We found that CLU overexpression resulted in a significant reduction of total and fibrillar amyloid in both cortex and hippocampus in the APP/PS1 mouse model of AD amyloidosis. CLU overexpression also ameliorated amyloid-associated neurotoxicity and gliosis. To complement these overexpression studies, we also analyzed the effects of haploinsufficiency of Clu using heterozygous (Clu+/−) mice and control littermates in the APP/PS1 model. CLU reduction led to a substantial increase in the amyloid plaque load in both cortex and hippocampus in APP/PS1; Clu+/− mice compared to wild-type (APP/PS1; Clu+/+) littermate controls, with a concomitant increase in neuritic dystrophy and gliosis. Conclusions Thus, both physiologic ~ 30% overexpression or ~ 50% reduction in CLU have substantial impacts on amyloid load and associated pathologies. Our results demonstrate that CLU plays a major role in Aβ accumulation in the brain and suggest that efforts aimed at CLU upregulation via pharmacological or gene delivery approaches offer a promising therapeutic strategy to regulate amyloid pathology.


2011 ◽  
Vol 31 (37) ◽  
pp. 13110-13117 ◽  
Author(s):  
K. Yamada ◽  
J. R. Cirrito ◽  
F. R. Stewart ◽  
H. Jiang ◽  
M. B. Finn ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Tien-Phat V. Huynh ◽  
Chao Wang ◽  
Ainsley C. Tran ◽  
G. Travis Tabor ◽  
Thomas E. Mahan ◽  
...  

Abstract Background The apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer disease (AD). ApoE is produced by both astrocytes and microglia in the brain, whereas hepatocytes produce the majority of apoE found in the periphery. Studies using APOE knock-in and transgenic mice have demonstrated a strong isoform-dependent effect of apoE on the accumulation of amyloid-β (Aβ) deposition in the brain in the form of both Aβ-containing amyloid plaques and cerebral amyloid angiopathy. However, the specific contributions of different apoE pools to AD pathogenesis remain unknown. Methods We have begun to address these questions by generating new lines of APOE knock-in (APOE-KI) mice (ε2/ε2, ε3/ε3, and ε4/ε4) where the exons in the coding region of APOE are flanked by loxP sites, allowing for cell type-specific manipulation of gene expression. We assessed these mice both alone and after crossing them with mice with amyloid deposition in the brain. Using biochemical and histological methods. We also investigated how removal of APOE expression from hepatocytes affected cerebral amyloid deposition. Results As in other APOE knock-in mice, apoE protein was present predominantly in astrocytes in the brain under basal conditions and was also detected in reactive microglia surrounding amyloid plaques. Primary cultured astrocytes and microglia from the APOE-KI mice secreted apoE in lipoprotein particles of distinct size distribution upon native gel analysis with microglial particles being substantially smaller than the HDL-like particles secreted by astrocytes. Crossing of APP/PS1 transgenic mice to the different APOE-KI mice recapitulated the previously described isoform-specific effect (ε4 > ε3) on amyloid plaque and Aβ accumulation. Deletion of APOE in hepatocytes did not alter brain apoE levels but did lead to a marked decrease in plasma apoE levels and changes in plasma lipid profile. Despite these changes in peripheral apoE and on plasma lipids, cerebral accumulation of amyloid plaques in APP/PS1 mice was not affected. Conclusions Altogether, these new knock-in strains offer a novel and dynamic tool to study the role of APOE in AD pathogenesis in a spatially and temporally controlled manner.


Sign in / Sign up

Export Citation Format

Share Document