scholarly journals Cell specific quantitative iron mapping on brain slices by immuno-µPIXE in healthy elderly and Parkinson’s disease

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
I. Friedrich ◽  
K. Reimann ◽  
S. Jankuhn ◽  
E. Kirilina ◽  
J. Stieler ◽  
...  

AbstractIron is essential for neurons and glial cells, playing key roles in neurotransmitter synthesis, energy production and myelination. In contrast, high concentrations of free iron can be detrimental and contribute to neurodegeneration, through promotion of oxidative stress. Particularly in Parkinson’s disease (PD) changes in iron concentrations in the substantia nigra (SN) was suggested to play a key role in degeneration of dopaminergic neurons in nigrosome 1. However, the cellular iron pathways and the mechanisms of the pathogenic role of iron in PD are not well understood, mainly due to the lack of quantitative analytical techniques for iron quantification with subcellular resolution. Here, we quantified cellular iron concentrations and subcellular iron distributions in dopaminergic neurons and different types of glial cells in the SN both in brains of PD patients and in non-neurodegenerative control brains (Co). To this end, we combined spatially resolved quantitative element mapping using micro particle induced X-ray emission (µPIXE) with nickel-enhanced immunocytochemical detection of cell type-specific antigens allowing to allocate element-related signals to specific cell types. Distinct patterns of iron accumulation were observed across different cell populations. In the control (Co) SNc, oligodendroglial and astroglial cells hold the highest cellular iron concentration whereas in PD, the iron concentration was increased in most cell types in the substantia nigra except for astroglial cells and ferritin-positive oligodendroglial cells. While iron levels in astroglial cells remain unchanged, ferritin in oligodendroglial cells seems to be depleted by almost half in PD. The highest cellular iron levels in neurons were located in the cytoplasm, which might increase the source of non-chelated Fe3+, implicating a critical increase in the labile iron pool. Indeed, neuromelanin is characterised by a significantly higher loading of iron including most probable the occupancy of low-affinity iron binding sites. Quantitative trace element analysis is essential to characterise iron in oxidative processes in PD. The quantification of iron provides deeper insights into changes of cellular iron levels in PD and may contribute to the research in iron-chelating disease-modifying drugs.

2017 ◽  
Vol 55 (1) ◽  
pp. 804-821 ◽  
Author(s):  
Debashis Dutta ◽  
Nilufar Ali ◽  
Emili Banerjee ◽  
Raghavendra Singh ◽  
Amit Naskar ◽  
...  

The neurodegenerative disorder is a prolonged persistence curse and effect on economic and physical challenges in an aging world. Parkinson has come in the second category of disability disorders and associated with progressive dopaminergic neuronal degeneration with severe motor complications. It is an observation that gradual disease progression causes 70% degeneration of striatal dopaminergic neurons. Globally there are around 7-10 million patients with Parkinson's disease, however, there are huge efforts for therapeutic improvement. According to studies, no single molecular pathway was pointed out as a single etiology to control disease progression due to a lack of targeted therapeutic strategies. Previously implemented symptomatic treatments include L-dopa (L-3,4-dihydroxyphenylalanine), deep brain stimulation, and the surgical insertion of a medical device. This leads to dyskinesia, dystonia and a higher risk of major surgical complications respectively. However, not all the above-mentioned therapies cannot regenerate the dopaminergic neurons in Parkinson’s disease patients. Recent advances in the field of cellular therapy have shown promising outcomes by differentiation of multipotent mesenchymal stem cells into dopaminergic neurons under the influence of a regenerative substance. In this review, we have discussed the differentiation of dopaminergic neurons by using different cell types that can be used as a cellular therapeutic approach for Parkinson’s disease. The information was collected through a comprehensive search using the keywords, “Parkinson Disease, Dopamine, Brain derived neurotrophic factor and neuron from reliable search engines, PubMed, Google Scholar and Medline reviews from the year 2010 to 2020.


Author(s):  
Vaibhav Walia ◽  
Ashish Gakkhar ◽  
Munish Garg

Parkinson's disease (PD) is a neurodegenerative disorder in which a progressive loss of the dopaminergic neurons occurs. The loss of the neurons is most prominent in the substantia nigra region of the brain. The prevalence of PD is much greater among the older patients suggesting the risk of PD increases with the increase of age. The exact cause of the neurodegeneration in PD is not known. In this chapter, the authors introduce PD, demonstrate its history, pathogenesis, neurobiology, sign and symptoms, diagnosis, and pharmacotherapy.


1998 ◽  
Vol 17 (5) ◽  
pp. 283-293 ◽  
Author(s):  
Peter Juergen Kramer ◽  
John Caldwell ◽  
Andreas Hofmann ◽  
Peter Tempel ◽  
Guenter Weisse

1-Methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) induces symptoms indistinguishable from those of Parkinson's disease. It selectively destroys dopaminergic neurons in the substantia nigra and the globus pallidus. Death of these same neurons is apparently the cause of idiopathic Parkinson's disease. As phenyl-1,2,3,6 tetrahydropyridine is a commonly encountered subunit in heterocyclic drugs and because MPTP was found as a minor impurity in early batches of a candidate drug at Merck KGaA, it may be assumed that MPTP will also be present as an as yet undiscovered minor impurity in various existing drugs. A neurotoxicity risk assessment on MPTP has been conducted to define the risk of MPTP as an impurity in drugs that are used orally. This risk assessment has shown that compounds containing less than 5.0 p.p.m. MPTP administered orally will not cause a neurotoxicological health risk to patients treated with such a drug.


2017 ◽  
Vol 8 (9) ◽  
pp. 3033-3042 ◽  
Author(s):  
Pamela Maher

Parkinson's disease (PD) is an age-associated degenerative disease of the midbrain that results from the loss of dopaminergic neurons in the substantia nigra.


Brain ◽  
2017 ◽  
Vol 140 (9) ◽  
pp. 2460-2474 ◽  
Author(s):  
Junchao Tong ◽  
Gausiha Rathitharan ◽  
Jeffrey H Meyer ◽  
Yoshiaki Furukawa ◽  
Lee-Cyn Ang ◽  
...  

Abstract See Jellinger (doi:10.1093/awx190) for a scientific commentary on this article.  The enzyme monoamine oxidases (B and A subtypes, encoded by MAOB and MAOA, respectively) are drug targets in the treatment of Parkinson’s disease. Inhibitors of MAOB are used clinically in Parkinson’s disease for symptomatic purposes whereas the potential disease-modifying effect of monoamine oxidase inhibitors is debated. As astroglial cells express high levels of MAOB, the enzyme has been proposed as a brain imaging marker of astrogliosis, a cellular process possibly involved in Parkinson’s disease pathogenesis as elevation of MAOB in astrocytes might be harmful. Since brain monoamine oxidase status in Parkinson’s disease is uncertain, our objective was to measure, by quantitative immunoblotting in autopsied brain homogenates, protein levels of both monoamine oxidases in three different degenerative parkinsonian disorders: Parkinson’s disease (n = 11), multiple system atrophy (n = 11), and progressive supranuclear palsy (n = 16) and in matched controls (n = 16). We hypothesized that if MAOB is ‘substantially’ localized to astroglial cells, MAOB levels should be generally associated with standard astroglial protein measures (e.g. glial fibrillary acidic protein). MAOB levels were increased in degenerating putamen (+83%) and substantia nigra (+10%, non-significant) in multiple system atrophy; in caudate (+26%), putamen (+27%), frontal cortex (+31%) and substantia nigra (+23%) of progressive supranuclear palsy; and in frontal cortex (+33%), but not in substantia nigra of Parkinson’s disease, a region we previously reported no increase in astrocyte protein markers. Although the magnitude of MAOB increase was less than those of standard astrocytic markers, significant positive correlations were observed amongst the astrocyte proteins and MAOB. Despite suggestions that MAOA (versus MAOB) is primarily responsible for metabolism of dopamine in dopamine neurons, there was no loss of the enzyme in the parkinsonian substantia nigra; instead, increased nigral levels of a MAOA fragment and ‘turnover’ of the enzyme were observed in the conditions. Our findings provide support that MAOB might serve as a biochemical imaging marker, albeit not entirely specific, for astrocyte activation in human brain. The observation that MAOB protein concentration is generally increased in degenerating brain areas in multiple system atrophy (especially putamen) and in progressive supranuclear palsy, but not in the nigra in Parkinson’s disease, also distinguishes astrocyte behaviour in Parkinson’s disease from that in the two ‘Parkinson-plus’ conditions. The question remains whether suppression of either MAOB in astrocytes or MAOA in dopamine neurons might influence progression of the parkinsonian disorders.


Sign in / Sign up

Export Citation Format

Share Document