scholarly journals Stem Cell Therapy: A Promising Treatment of Parkinson’s Diseases

The neurodegenerative disorder is a prolonged persistence curse and effect on economic and physical challenges in an aging world. Parkinson has come in the second category of disability disorders and associated with progressive dopaminergic neuronal degeneration with severe motor complications. It is an observation that gradual disease progression causes 70% degeneration of striatal dopaminergic neurons. Globally there are around 7-10 million patients with Parkinson's disease, however, there are huge efforts for therapeutic improvement. According to studies, no single molecular pathway was pointed out as a single etiology to control disease progression due to a lack of targeted therapeutic strategies. Previously implemented symptomatic treatments include L-dopa (L-3,4-dihydroxyphenylalanine), deep brain stimulation, and the surgical insertion of a medical device. This leads to dyskinesia, dystonia and a higher risk of major surgical complications respectively. However, not all the above-mentioned therapies cannot regenerate the dopaminergic neurons in Parkinson’s disease patients. Recent advances in the field of cellular therapy have shown promising outcomes by differentiation of multipotent mesenchymal stem cells into dopaminergic neurons under the influence of a regenerative substance. In this review, we have discussed the differentiation of dopaminergic neurons by using different cell types that can be used as a cellular therapeutic approach for Parkinson’s disease. The information was collected through a comprehensive search using the keywords, “Parkinson Disease, Dopamine, Brain derived neurotrophic factor and neuron from reliable search engines, PubMed, Google Scholar and Medline reviews from the year 2010 to 2020.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Huynh Kim Thoa Truong ◽  
Man Anh Huynh ◽  
My Dung Vuu ◽  
Thi Phuong Thao Dang

Parkinson’s disease (PD), which is characterized by the decreased motor function and the loss of dopaminergic neurons, is a common neurodegenerative disorder in elders. There have been numerous in vitro and in vivo models developed to study mechanisms of PD and screen potential drug. Recently, dUCH-knockdown Drosophila model has been established and showed potential for screening antioxidants for PD treatment. The dUCH-knockdown Drosophila model of PD mimics most of main PD pathologies such as dopaminergic neurons degeneration, locomotor dysfunction, and shortage of dopamine in the brain. Common purslane (Portulaca oleracea L.) is a nutritious vegetable containing a variety of antioxidants, levodopa, and dopamine, a neurotransmitter closely related to PD. Purslane has been reported to exert neuroprotective effects against several neurotoxins including rotenone and 6-OHDA in PD models. However, the recent data have not provided sufficient evidence for using purslane to treat PD or decelerate disease progression. Therefore, in this study, we utilized dUCH-knockdown fly to evaluate the capacity of purslane extracts for PD treatment. The results showed that purslane extracts improved locomotor ability in the larval stage and decelerated disease progression in the adult stage. Additionally, purslane extracts also reduced dopaminergic neuron degeneration. Taken together, our data strongly demonstrated that purslane extracts effectively rescued PD-like phenotypes in the fly model. This result contributed a foundation for further study on the application of purslane in PD treatment.


2020 ◽  
Author(s):  
Brett Fulleylove-Krause ◽  
Samantha Sison ◽  
Allison Ebert

Abstract Objectives: Parkinson’s disease (PD) is a common neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. Although the underlying mechanisms of dopaminergic neuron loss is not fully understood, evidence suggests mitochondrial malfunction as a key contributor to disease pathogenesis. We previously found that human PD patient stem cell-derived dopaminergic neurons exhibit reduced nicotinamide adenine dinucleotide (NAD+) levels and reduce activity of sirtuins, a group of NAD+-dependent deacetylase enzymes that participate in the regulation of mitochondrial function, energy production, and cell survival. Thus, here we tested whether treatment of PD stem cell-derived dopaminergic neurons with nicotinamide mononucleotide (NMN), an NAD+ precursor, could increase NAD+ levels and improve sirtuin activity. Results: We treated PD iPSC-derived dopaminergic neurons with NMN and found that NAD+ levels did increase. The deacetylase activity of sirtuin (SIRT) 2 was improved with NMN treatment, but NMN had no impact on deacetylase activity of SIRT 1 or 3. These results suggest that NMN can restore NAD+ levels and SIRT 2 activity, but that additional mechanisms are involved SIRT 1 and 3 dysregulation in PD dopaminergic neurons.


Author(s):  
Vaibhav Walia ◽  
Ashish Gakkhar ◽  
Munish Garg

Parkinson's disease (PD) is a neurodegenerative disorder in which a progressive loss of the dopaminergic neurons occurs. The loss of the neurons is most prominent in the substantia nigra region of the brain. The prevalence of PD is much greater among the older patients suggesting the risk of PD increases with the increase of age. The exact cause of the neurodegeneration in PD is not known. In this chapter, the authors introduce PD, demonstrate its history, pathogenesis, neurobiology, sign and symptoms, diagnosis, and pharmacotherapy.


2020 ◽  
Vol 21 (12) ◽  
pp. 4250
Author(s):  
Yuzuru Imai

Parkinson’s disease (PD) is the second most common neurodegenerative disorder characterized by age-dependent motor dysfunction and degeneration of the midbrain dopaminergic neurons [...]


2020 ◽  
Vol 8 (1) ◽  
pp. 47-65
Author(s):  
Falaq Naz ◽  
Yasir Hasan Siddique

Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatum via nigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.


2020 ◽  
Vol 10 (10) ◽  
pp. 713
Author(s):  
Efthalia Angelopoulou ◽  
Yam Nath Paudel ◽  
Chiara Villa ◽  
Christina Piperi

Parkinson’s disease (PD), the second most common neurodegenerative disorder after Alzheimer’s disease, is a clinically heterogeneous disorder, with obscure etiology and no disease-modifying therapy to date. Currently, there is no available biomarker for PD endophenotypes or disease progression. Accumulating evidence suggests that mutations in genes related to lysosomal function or lysosomal storage disorders may affect the risk of PD development, such as GBA1 gene mutations. In this context, recent studies have revealed the emerging role of arylsulfatase A (ASA), a lysosomal hydrolase encoded by the ARSA gene causing metachromatic leukodystrophy (MLD) in PD pathogenesis. In particular, altered ASA levels have been detected during disease progression, and reduced enzymatic activity of ASA has been associated with an atypical PD clinical phenotype, including early cognitive impairment and essential-like tremor. Clinical evidence further reveals that specific ARSA gene variants may act as genetic modifiers in PD. Recent in vitro and in vivo studies indicate that ASA may function as a molecular chaperone interacting with α-synuclein (SNCA) in the cytoplasm, preventing its aggregation, secretion and cell-to-cell propagation. In this review, we summarize the results of recent preclinical and clinical studies on the role of ASA in PD, aiming to shed more light on the potential implication of ASA in PD pathogenesis and highlight its biomarker potential.


2020 ◽  
Vol 20 (3) ◽  
pp. 207-222
Author(s):  
Tapan Behl ◽  
Ishnoor Kaur ◽  
Arun Kumar ◽  
Vineet Mehta ◽  
Gokhan Zengin ◽  
...  

: The limitations of conventional treatment therapies in Parkinson’s disorder, a common neurodegenerative disorder, lead to the development of an alternative gene therapy approach. Multiple treatment options targeting dopaminergic neuronal regeneration, production of enzymes linked with dopamine synthesis, subthalamic nucleus neurons, regulation of astrocytes and microglial cells and potentiating neurotrophic factors, were established. Viral vector-based dopamine delivery, prodrug approaches, fetal ventral mesencephalon tissue transplantation and dopamine synthesizing enzyme encoding gene delivery are significant therapies evidently supported by numerous trials. The review primarily elaborates on the significant role of glial cell-line derived neurotrophic factor in alleviating motor symptoms and the loss of dopaminergic neurons in Parkinson’s disease. Neuroprotective and neuroregenerative effects of GDNF were established via preclinical and clinical study outcomes. The binding of GDNF family ligands with associated receptors leads to the formation of a receptor-ligand complex activating Ret receptor of tyrosine kinase family, which is only expressed in dopaminergic neurons, playing an important role in Parkinson’s disease, via its association with the essential protein encoded genes. Furthermore, the review establishes delivery aspects, like ventricular delivery of recombinant GDNF, intraparenchymal and intraputaminal delivery using infusion catheters. The review highlights problems and challenges of GDNF delivery, and essential measures to overcome them, like gene therapy combinations, optimization of delivery vectors, newer targeting devices, motor symptoms curbing focused ultrasound techniques, modifications in patient selection criteria and development of novel delivery strategies based on liposomes and encapsulated cells, to promote safe and effective delivery of neurotrophic factor and establishment of routine treatment therapy for patients.


2020 ◽  
Vol 17 (10) ◽  
pp. 1261-1269
Author(s):  
Yasir Hasan Siddique ◽  
Rahul ◽  
Mantasha Idrisi ◽  
Mohd. Shahid

Background: Parkinson’s disease is a common neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Introduction: The effects of alpha synuclein, parkin mutation and pharmacological agents have been studied in the Drosophila model. Methods: The effect of cabergoline was studied on the cognitive impairments exhibited by the transgenic Drosophila expressing human alpha-synuclein in the neurons. The PD flies were allowed to feed on the diet having 0.5, 1 and 1.5 μM of cabergoline. Results and Discussion: The exposure of cabergoline not only showed a dose-dependent significant delay in the cognitive impairments but also prevented the loss of dopaminergic neurons. Molecular docking studies showed the positive interaction between cabergoline and alpha-synuclein. Conclusion: The results suggest a protective effect of cabergoline against the cognitive impairments.


2020 ◽  
Vol 19 (8) ◽  
pp. 572-583
Author(s):  
Helle Bogetofte ◽  
Arezo Alamyar ◽  
Morten Blaabjerg ◽  
Morten Meyer

Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by a preferential degeneration of dopaminergic neurons in the substantia nigra pars compacta. This results in a profound decrease of striatal dopamine (DA) levels, which in turn leads to the cardinal motor symptoms of PD; muscle rigidity, hypo- and bradykinesia and resting tremor. Even 50 years after its initial use, the DA precursor levodopa (L-dopa), is still the most effective medical therapy for the symptomatic treatment of PD. Long-term L-dopa treatment is however, unfortunately associated with undesirable side effects such as motor fluctuations and dyskinesias. Furthermore, despite the disease alleviating effects of L-dopa, it is still discussed whether L-dopa has a neurotoxic or neuroprotective effect on dopaminergic neurons. Here we review the history of L-dopa, including its discovery, development and current use in the treatment of PD. We furthermore review current evidence of the L-dopa-induced side effects and perspectives of L-dopa treatment in PD compared to other established treatments such as DA-agonists and the inhibitors of catechol-o-methyltransferase and monoamine oxidase B.


2020 ◽  
Vol 21 (19) ◽  
pp. 7329
Author(s):  
Eslam El Nebrisi ◽  
Hayate Javed ◽  
Shreesh K Ojha ◽  
Murat Oz ◽  
Safa Shehab

Parkinson’s disease (PD) is a common neurodegenerative disorder, characterized by selective degeneration of dopaminergic nigrostriatal neurons. Most of the existing pharmacological approaches in PD consider replenishing striatal dopamine. It has been reported that activation of the cholinergic system has neuroprotective effects on dopaminergic neurons, and human α7-nicotinic acetylcholine receptor (α7-nAChR) stimulation may offer a potential therapeutic approach in PD. Our recent in-vitro studies demonstrated that curcumin causes significant potentiation of the function of α7-nAChRs expressed in Xenopus oocytes. In this study, we conducted in vivo experiments to assess the role of the α7-nAChR on the protective effects of curcumin in an animal model of PD. Intra-striatal injection of 6-hydroxydopmine (6-OHDA) was used to induce Parkinsonism in rats. Our results demonstrated that intragastric curcumin treatment (200 mg/kg) significantly improved the abnormal motor behavior and offered neuroprotection against the reduction of dopaminergic neurons, as determined by tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra and caudoputamen. The intraperitoneal administration of the α7-nAChR-selective antagonist methyllycaconitine (1 µg/kg) reversed the neuroprotective effects of curcumin in terms of both animal behavior and TH immunoreactivity. In conclusion, this study demonstrates that curcumin has a neuroprotective effect in a 6-hydroxydopmine (6-OHDA) rat model of PD via an α7-nAChR-mediated mechanism.


Sign in / Sign up

Export Citation Format

Share Document