scholarly journals CMOS voltage-controlled oscillator with high-performance MEMS tunable inductor

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Uikyu Chae ◽  
Jeongsoo Park ◽  
Jeong-Geun Kim ◽  
Hyun-Yong Yu ◽  
Il-Joo Cho

AbstractLC CMOS voltage-controlled oscillators (VCOs) with tunable inductors are essential for high-performance, multi-band communication systems, such as IoT applications and 5G communication. However, VCOs that use CMOS tunable inductors have difficulty in achieving high RF performance due to the low Q-factor of the inductor. In addition, previously reported CMOS VCOs integrated with MEMS inductors have used CMOS switches for tuning frequency bands, but they also had large signal losses on the switch. Herein, we propose a CMOS VCO that is integrated with a MEMS tunable inductor that tunes the frequency band with three MEMS switches. The proposed MEMS tunable inductor enables us to achieve high RF performance due to the suspended structure, and RF MEMS switches enable lower signal loss than CMOS switches. In this work, we successfully fabricated the proposed CMOS VCO integrated with a MEMS tunable inductor using the flip-chip bonding process, and we measured oscillation frequencies according to the actuation of the three switches. The oscillation powers were measured as − 3.03 dBm @ 1.39 GHz, − 5.80 @ 1.98 GHz, − 7.44 dBm @ 2.81 GHz, and − 8.77 dBm @ 3.68 GHz.

2020 ◽  
Author(s):  
Lakshmi Swaminathan

RF (Radio Frequency) MEMS (Micro Electro Mechanical Systems) technology is the application of micromachined mechanical structures, controlled by electrical signals and interacting with signals in the RF range. The applications of these devices range from switching networks for satellite communication systems to high performance resonators and tuners. RF MEMS switches are the first and foremost MEMS devices designed for RF technology. A specialized method for fabricating microsturctures called surface micromachining process is used for fabricating the RF MEMS switches. Die level packaging using available surface mount style RF packages. The packaging process involved the design of RF feed throughs on the Alumina substrates to the die attachment, wire bonding and hermetic sealing using low temperature processes.


2012 ◽  
Vol 81 ◽  
pp. 65-74 ◽  
Author(s):  
Jacopo Iannacci ◽  
Giuseppe Resta ◽  
Paola Farinelli ◽  
Roberto Sorrentino

MEMS (MicroElectroMechanical-Systems) technology applied to the field of Radio Frequency systems (i.e. RF-MEMS) has emerged in the last 10-15 years as a valuable and viable solution to manufacture low-cost and very high-performance passive components, like variable capacitors, inductors and micro-relays, as well as complex networks, like tunable filters, reconfigurable impedance matching networks and phase shifters, and so on. The availability of such components and their integration within RF systems (e.g. radio transceivers, radars, satellites, etc.) enables boosting the characteristics and performance of telecommunication systems, addressing for instance a significant increase of their reconfigurability. The benefits resulting from the employment of RF-MEMS technology are paramount, being some of them the reduction of hardware redundancy and power consumption, along with the operability of the same RF system according to multiple standards. After framing more in detail the whole context of RF MEMS technology, this paper will provide a brief introduction on a typical RF-MEMS technology platform. Subsequently, some relevant examples of lumped RF MEMS passive elements and complex reconfigurable networks will be reported along with their measured RF performance and characteristics.


2011 ◽  
Vol 3 (5) ◽  
pp. 509-520 ◽  
Author(s):  
Montserrat Fernández-Bolaños Badía ◽  
Pierre Nicole ◽  
Adrian Mihai Ionescu

This paper reports on the potential of RF-MEMS technology based on aluminum nitride capacitive dielectric and nickel-suspended membranes to provide RF circuit functions in reconfigurable front-end radios. The RF performance of capacitive switches, distributed MEMS transmission lines (DMTLs) phase shifters for beam steering and tunable filters, including center frequency and bandwidth tuning of bandpass and band-stop filters are presented. Detailed characterization based on S-parameter data demonstrates very promising figures of merit of all fabricated demonstrators from 5 to 40 GHz.


2016 ◽  
Vol 100 ◽  
pp. 100-108
Author(s):  
Roberto Sorrentino ◽  
Paola Farinelli ◽  
Alessandro Cazzorla ◽  
Luca Pelliccia

The bursting wireless communication market, including 5G, advanced satellite communication systems and COTM (Communication On The Move) terminals, require ever more sophisticated functions, from multi-band and multi-function operations to electronically steerable and reconfigurable antennas, pushing technological developments towards the use of tunable microwave components and circuits. Reconfigurability allows indeed for reduced complexity and cost of the apparatuses. In this context, RF MEMS (Micro-Electro-Mechanical-Systems) technology has emerged as a very attractive solution to realize both tunable devices (e.g. variable capacitors, inductors and micro-relays), as well as complex circuits (e.g. tunable filters, reconfigurable matching networks and reconfigurable beam forming networks for phased array antennas). High linearity, low loss and high miniaturization are the typical advantages of RF MEMS over conventional technologies. Micromechanical components fabricated via IC-compatible MEMS technologies and capable of low-loss filtering, switching and frequency generation allow for miniaturized wireless front-ends via higher levels of integration. In addition, the inherent high linearity of the MEMS switches enables carrier aggregations without introducing intermodulation distortions. This paper will review the recent advances in the development of the RF MEMS to RF tunable circuits and systems.


Author(s):  
Daniel J. Hyman ◽  
Roger Kuroda

XCom Wireless is a small business specializing in RF MEMS-enabled tunable filters and phase shifters for next-generation communications systems. XCom has developed a high-yielding flip-chip assembly and packaging technique for implementing RF MEMS devices into fully-packaged chip-scale hybrid integrated circuitry for radio and microwave frequency applications through 25 GHz. This paper discusses the packaging approach employed, performance and reliability aspects, and lessons learned. The packaging is similar to a hybrid module approach, with discrete RF MEMS component dies flip-chipped into larger packages containing large-area integrated passives. The first level of interconnect is a pure gold flip chip for high yield strength and reliability with small dies. The use of first-level flip-chip and second-level BGAs allows the extremely large bandwidth MEMS devices to maintain high performance characteristics.


2016 ◽  
Vol 29 (2) ◽  
pp. 177-191 ◽  
Author(s):  
Zlatica Marinkovic ◽  
Vera Markovic ◽  
Tomislav Ciric ◽  
Larissa Vietzorreck ◽  
Olivera Pronic-Rancic

The increased growth of the applications of RF MEMS switches in modern communication systems has created an increased need for their accurate and efficient models. Artificial neural networks have appeared as a fast and efficient modelling tool providing similar accuracy as standard commercial simulation packages. This paper gives an overview of the applications of artificial neural networks in modelling of RF MEMS switches, in particular of the capacitive shunt switches, proposed by the authors of the paper. Models for the most important switch characteristics in electrical and mechanical domains are considered, as well as the inverse models aimed to determine the switch bridge dimensions for specified requirements for the switch characteristics.


2016 ◽  
Vol 22 (7) ◽  
pp. 1741-1746 ◽  
Author(s):  
Anna Persano ◽  
Fabio Quaranta ◽  
Giovanni Capoccia ◽  
Emanuela Proietti ◽  
Andrea Lucibello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document