scholarly journals Earthquake early warning for the 2016 Kumamoto earthquake: performance evaluation of the current system and the next-generation methods of the Japan Meteorological Agency

2016 ◽  
Vol 68 (1) ◽  
Author(s):  
Yuki Kodera ◽  
Jun Saitou ◽  
Naoki Hayashimoto ◽  
Shimpei Adachi ◽  
Masahiko Morimoto ◽  
...  
2017 ◽  
Vol 12 (6) ◽  
pp. 1139-1150 ◽  
Author(s):  
Shoji Ohtomo ◽  
Reo Kimura ◽  
Naoshi Hirata ◽  
◽  
◽  
...  

The 2016 Kumamoto earthquake consisted of a magnitude 6.2 foreshock that occurred on the 14th of April, and a magnitude 7.3 main shock that occurred on the 16th of April. The main shock occurring over the magnitude 6.2 foreshock was not anticipated because the foreshock was originally considered to be the main shock. After the earthquakes occurred, the Japan Meteorological Agency (JMA) discontinued its policy of announcing the probability of aftershock occurrences. The experience of the Kumamoto earthquake and the policy change concerning risk communication may affect the public risk perception of earthquakes, as well as the public trust toward authorities. In this study, we examined the reasons residents made the decision to evacuation both the foreshock and the main shock. Moreover, we investigated how residents perceived subsequent earthquake risk and they evaluate similarity and trust toward the authorities (the JMA, government, mass media, prefecture, and municipality). This study analyzed data from a mail survey implemented by the MEXT of Japan in the areas of the Kumamoto prefecture that were damaged by the earthquake. As a result, there were differences in the reasons for evacuation decisions between the foreshock and the main shock. Although residents decided to evacuate based on a fear of disaster in the foreshock, they decided to evacuate the main shock based on neighborhood communication. Moreover, the residents’ evacuation patterns influenced the earthquake risk perception. As well, the evacuation pattern influenced similarity toward the authorities and then reduced trusts toward the authorities. This study indicates that residents amplified the evaluations of the authorities after the earthquake. The influences of similarities toward the authorities became salient as a determinant of trust. This study reveals features of residents’ risk reactions to the earthquake, and discusses the importance of the similarity of the authorities for disaster risk communication.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Yasuhira Aoyagi ◽  
Haruo Kimura ◽  
Kazuo Mizoguchi

Abstract The earthquake rupture termination mechanism and size of the ruptured area are crucial parameters for earthquake magnitude estimations and seismic hazard assessments. The 2016 Mw 7.0 Kumamoto Earthquake, central Kyushu, Japan, ruptured a 34-km-long area along previously recognized active faults, eastern part of the Futagawa fault zone and northernmost part of the Hinagu fault zone. Many researchers have suggested that a magma chamber under Aso Volcano terminated the eastward rupture. However, the termination mechanism of the southward rupture has remained unclear. Here, we conduct a local seismic tomographic inversion using a dense temporary seismic network to detail the seismic velocity structure around the southern termination of the rupture. The compressional-wave velocity (Vp) results and compressional- to shear-wave velocity (Vp/Vs) structure indicate several E–W- and ENE–WSW-trending zonal anomalies in the upper to middle crust. These zonal anomalies may reflect regional geological structures that follow the same trends as the Oita–Kumamoto Tectonic Line and Usuki–Yatsushiro Tectonic Line. While the 2016 Kumamoto Earthquake rupture mainly propagated through a low-Vp/Vs area (1.62–1.74) along the Hinagu fault zone, the southern termination of the earthquake at the focal depth of the mainshock is adjacent to a 3-km-diameter high-Vp/Vs body. There is a rapid 5-km step in the depth of the seismogenic layer across the E–W-trending velocity boundary between the low- and high-Vp/Vs areas that corresponds well with the Rokkoku Tectonic Line; this geological boundary is the likely cause of the dislocation of the seismogenic layer because it is intruded by serpentinite veins. A possible factor in the southern rupture termination of the 2016 Kumamoto Earthquake is the existence of a high-Vp/Vs body in the direction of southern rupture propagation. The provided details of this inhomogeneous barrier, which are inferred from the seismic velocity structures, may improve future seismic hazard assessments for a complex fault system composed of multiple segments.


Sign in / Sign up

Export Citation Format

Share Document