scholarly journals Impairing photorespiration increases photosynthetic conversion of CO2 to isoprene in engineered cyanobacteria

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jie Zhou ◽  
Fan Yang ◽  
Fuliang Zhang ◽  
Hengkai Meng ◽  
Yanping Zhang ◽  
...  

AbstractPhotorespiration consumes fixed carbon and energy generated from photosynthesis to recycle glycolate and dissipate excess energy. The aim of this study was to investigate whether we can use the energy that is otherwise consumed by photorespiration to improve the production of chemicals which requires energy input. To this end, we designed and introduced an isoprene synthetic pathway, which requires ATP and NADPH input, into the cyanobacterium Synechocystis sp. 6803. We then deleted the glcD1 and glcD2 genes which encode glycolate dehydrogenase to impair photorespiration in isoprene-producing strain of Synechocystis. Production of isoprene in glcD1/glcD2 disrupted strain doubled, and stoichiometric analysis indicated that the energy saved from the impaired photorespiration was redirected to increase production of isoprene. Thus, we demonstrate we can use the energy consumed by photorespiration of cyanobacteria to increase the energy-dependent production of chemicals from CO2.

1995 ◽  
Vol 99 (21) ◽  
pp. 8453-8457 ◽  
Author(s):  
David J. Lavrich ◽  
Mark A. Buntine ◽  
David Serxner ◽  
Mark A. Johnson

Author(s):  
Harun Bal ◽  
Banu Tanrıöver ◽  
Müge Manga

The security of energy supply has become an important issue for energy-dependent countries due to increasing energy demand and energy input prices in recent years. Therefore, energy-dependent countries have developed energy safety strategies to reduce dependence. However, the environmental problems that occur because of the increase in energy consumption, countries had to adopt an economic development process, sustainable development strategies taking account of environmental factors together with economic growth. Thus, an energy input and optimal energy policies have become increasingly important. This paper investigates the real energy efficiency by decomposing the structural and production activities and energy consumption changes of MINT countries, namely, Mexico, Indonesia, Nigeria and Turkey for the period of 1990-2014 utilizing Logarithmic Average Division Index Method. The results show that Mexico uses energy more efficiently among the countries. Mexico is followed by Indonesia, Turkey and Nigeria, respectively.


Author(s):  
R.F. Egerton

SIGMAL is a short (∼ 100-line) Fortran program designed to rapidly compute cross-sections for L-shell ionization, particularly the partial crosssections required in quantitative electron energy-loss microanalysis. The program is based on a hydrogenic model, the L1 and L23 subshells being represented by scaled Coulombic wave functions, which allows the generalized oscillator strength (GOS) to be expressed analytically. In this basic form, the model predicts too large a cross-section at energies near to the ionization edge (see Fig. 1), due mainly to the fact that the screening effect of the atomic electrons is assumed constant over the L-shell region. This can be remedied by applying an energy-dependent correction to the GOS or to the effective nuclear charge, resulting in much closer agreement with experimental X-ray absorption data and with more sophisticated calculations (see Fig. 1 ).


Author(s):  
R. D. Sjolund ◽  
C. Y. Shih

The differentiation of phloem in plant tissue cultures offers a unique opportunity to study the development and structure of sieve elements in a manner that avoids the injury responses associated with the processing of similar elements in intact plants. Short segments of sieve elements formed in tissue cultures can be fixed intact while the longer strands occuring in whole plants must be cut into shorter lengths before processing. While iyuch controversy surrounds the question of phloem function in tissue cultures , sieve elements formed in these cultured cells are structurally similar to those of Intact plants. We are particullarly Interested In the structure of the plasma membrane and the peripheral ER in these cells because of their possible role in the energy-dependent active transport of sucrose into the sieve elements.


2020 ◽  
Author(s):  
SANJIB KAR ◽  
Sruti Mondal ◽  
Kasturi Sahu ◽  
Dilruba Hasina ◽  
Tapobrata Som ◽  
...  

<p>The synthesis of new graphene-type materials (<i>via</i> polymerization of porphyrin macrocycles) through a simple chemical synthetic pathway (at RT) has been demonstrated. This newly synthesized material can be dispersed in water with an average sheet size of few microns and with single layer thickness. As the porphyrin contains four inner ring nitrogen atoms thus the presented polymeric material will be close analogous of N-doped graphene. Porphyrin as the key component to synthesize layered graphene type continuous 2D structure has never been attempted before. </p> <p> </p>


Author(s):  
Jack Rowbotham ◽  
Oliver Lenz ◽  
Holly Reeve ◽  
Kylie Vincent

<p></p><p>Chemicals labelled with the heavy hydrogen isotope deuterium (<sup>2</sup>H) have long been used in chemical and biochemical mechanistic studies, spectroscopy, and as analytical tracers. More recently, demonstration of selectively deuterated drug candidates that exhibit advantageous pharmacological traits has spurred innovations in metal-catalysed <sup>2</sup>H insertion at targeted sites, but asymmetric deuteration remains a key challenge. Here we demonstrate an easy-to-implement biocatalytic deuteration strategy, achieving high chemo-, enantio- and isotopic selectivity, requiring only <sup>2</sup>H<sub>2</sub>O (D<sub>2</sub>O) and unlabelled dihydrogen under ambient conditions. The vast library of enzymes established for NADH-dependent C=O, C=C, and C=N bond reductions have yet to appear in the toolbox of commonly employed <sup>2</sup>H-labelling techniques due to requirements for suitable deuterated reducing equivalents. By facilitating transfer of deuterium atoms from <sup>2</sup>H<sub>2</sub>O solvent to NAD<sup>+</sup>, with H<sub>2</sub> gas as a clean reductant, we open up biocatalysis for asymmetric reductive deuteration as part of a synthetic pathway or in late stage functionalisation. We demonstrate enantioselective deuteration via ketone and alkene reductions and reductive amination, as well as exquisite chemo-control for deuteration of compounds with multiple unsaturated sites.</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document