scholarly journals Detection of Martian dust storms using mask regional convolutional neural networks

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Rasha Alshehhi ◽  
Claus Gebhardt

AbstractMartian dust plays a crucial role in the meteorology and climate of the Martian atmosphere. It heats the atmosphere, enhances the atmospheric general circulation, and affects spacecraft instruments and operations. Compliant with that, studying dust is also essential for future human exploration. In this work, we present a method for the deep-learning-based detection of the areal extent of dust storms in Mars satellite imagery. We use a mask regional convolutional neural network, consisting of a regional-proposal network and a mask network. We apply the detection method to Mars daily global maps of the Mars global surveyor, Mars orbiter camera. We use center coordinates of dust storms from the eight-year Mars dust activity database as ground-truth to train and validate the method. The performance of the regional network is evaluated by the average precision score with $$50\%$$ 50 % overlap ($$mAP_{50}$$ m A P 50 ), which is around $$62.1\%$$ 62.1 % .

2021 ◽  
Author(s):  
Rasha Alshehhi ◽  
Claus Gebhardt

Abstract Martian dust plays a crucial role in the meteorology and climate of the Martian atmosphere. It heats the atmosphere, enhances the atmospheric general circulation, and affects spacecraft instruments and operations. Compliant with that, studying dust is also essential for future human exploration. In this work, we present a method for the deep-learning-based detection of the areal extent of dust storms in Mars satellite imagery. We use a mask regional convolutional neural network (R-CNN), consisting of a regional-proposal network (RPN) and a mask network. We apply the detection method to Mars Daily Global Maps (MDGMs) of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC). We use center coordinates of dust storms from the eight-year Mars Dust Activity Database (MDAD) as ground-truth to train and validate the method. The performance of the regional network is evaluated by the average precision score with 50% overlap (mAP50), which is around 62.1%.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 197
Author(s):  
Meng-ting Fang ◽  
Zhong-ju Chen ◽  
Krzysztof Przystupa ◽  
Tao Li ◽  
Michal Majka ◽  
...  

Examination is a way to select talents, and a perfect invigilation strategy can improve the fairness of the examination. To realize the automatic detection of abnormal behavior in the examination room, the method based on the improved YOLOv3 (The third version of the You Only Look Once algorithm) algorithm is proposed. The YOLOv3 algorithm is improved by using the K-Means algorithm, GIoUloss, focal loss, and Darknet32. In addition, the frame-alternate dual-thread method is used to optimize the detection process. The research results show that the improved YOLOv3 algorithm can improve both the detection accuracy and detection speed. The frame-alternate dual-thread method can greatly increase the detection speed. The mean Average Precision (mAP) of the improved YOLOv3 algorithm on the test set reached 88.53%, and the detection speed reached 42 Frames Per Second (FPS) in the frame-alternate dual-thread detection method. The research results provide a certain reference for automated invigilation.


1995 ◽  
Vol 43 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Anatoly V. Lozhkin ◽  
Patricia M. Anderson

AbstractAlluvial, fluvial, and organic deposits of the last interglaciation are exposed along numerous river terraces in northeast Siberia. Although chronological control is often poor, the paleobotanical data suggest range extensions of up to 1000 km for the primary tree species. These data also indicate that boreal communities of the last interglaciation were similar to modern ones in composition, but their distributions were displaced significantly to the north-northwest. Inferences about climate of this period suggest that mean July temperatures were warmer by 4 to 8°C, and seasonal precipitation was slightly greater. Mean January temperatures may have been severely cooler than today (up to 12°C) along the Arctic coast, but similar or slightly warmer than present in other areas. The direction and magnitude of change in July temperatures agree with Atmospheric General Circulation Models, but the 126,000-year-B.P. model results also suggest trends opposite to the paleobotanical data, with simulated cooler winter temperatures and drier conditions than present during the climatic optimum.


Sign in / Sign up

Export Citation Format

Share Document