scholarly journals The SREBP (Sterol Regulatory Element-Binding Protein) pathway: a regulatory bridge between carotenogenesis and sterol biosynthesis in the carotenogenic yeast Xanthophyllomyces dendrorhous

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Melissa Gómez ◽  
Marcelo Baeza ◽  
Víctor Cifuentes ◽  
Jennifer Alcaíno

AbstractXanthophyllomyces dendrorhous is a basidiomycete yeast that naturally produces the red–orange carotenoid astaxanthin, which has remarkable antioxidant properties. The biosynthesis of carotenoids and sterols share some common elements that have been studied in X. dendrorhous. For example, their synthesis requires metabolites derived from the mevalonate pathway and in both specific pathways, cytochrome P450 enzymes are involved that share a single cytochrome P450 reductase, CrtR, which is essential for astaxanthin biosynthesis, but is replaceable for ergosterol biosynthesis. Research on the regulation of carotenoid biosynthesis is still limited in X. dendrorhous; however, it is known that the Sterol Regulatory Element-Binding Protein (SREBP) pathway, which is a conserved regulatory pathway involved in the control of lipid metabolism, also regulates carotenoid production in X. dendrorhous. This review addresses the similarities and differences that have been observed between mammal and fungal SREBP pathways and what it is known about this pathway regarding the regulation of the production of carotenoids and sterols in X. dendrorhous.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Halima Abobaker ◽  
Yun Hu ◽  
Nagmeldin A. Omer ◽  
Zhen Hou ◽  
Abdulrahman A. Idriss ◽  
...  

Abstract Background Laying hens supplemented with betaine demonstrate activated adrenal steroidogenesis and deposit higher corticosterone (CORT) in the egg yolk. Here we further investigate the effect of maternal betaine on the plasma CORT concentration and adrenal expression of steroidogenic genes in offspring pullets. Results Maternal betaine significantly reduced (P < 0.05) plasma CORT concentration and the adrenal expression of vimentin that is involved in trafficking cholesterol to the mitochondria for utilization in offspring pullets. Concurrently, voltage-dependent anion channel 1 and steroidogenic acute regulatory protein, the two mitochondrial proteins involved in cholesterol influx, were both down-regulated at mRNA and protein levels. However, enzymes responsible for steroid syntheses, such as cytochrome P450 family 11 subfamily A member 1 and cytochrome P450 family 21 subfamily A member 2, were significantly (P < 0.05) up-regulated at mRNA or protein levels in the adrenal gland of pullets derived from betaine-supplemented hens. Furthermore, expression of transcription factors, such as steroidogenic factor-1, sterol regulatory element-binding protein 1 and cAMP response element-binding protein, was significantly (P < 0.05) enhanced, together with their downstream target genes, such as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, LDL receptor and sterol regulatory element-binding protein cleavage-activating protein. The promoter regions of most steroidogenic genes were significantly (P < 0.05) hypomethylated, although methyl transfer enzymes, such as AHCYL, GNMT1 and BHMT were up-regulated. Conclusions These results indicate that the reduced plasma CORT in betaine-supplemented offspring pullets is linked to suppressed cholesterol trafficking into the mitochondria, despite the activation of cholesterol and corticosteroid synthetic genes associated with promoter hypomethylation.


2019 ◽  
Vol 10 ◽  
Author(s):  
María Soledad Gutiérrez ◽  
Sebastián Campusano ◽  
Ana María González ◽  
Melissa Gómez ◽  
Salvador Barahona ◽  
...  

1995 ◽  
Vol 270 (49) ◽  
pp. 29422-29427 ◽  
Author(s):  
Xianxin Hua ◽  
Juro Sakai ◽  
Ho Y. K. ◽  
Joseph L. Goldstein ◽  
Michael S. Brown

2009 ◽  
Vol 29 (17) ◽  
pp. 4864-4872 ◽  
Author(s):  
Seung-Soon Im ◽  
Linda E. Hammond ◽  
Leyla Yousef ◽  
Cherryl Nugas-Selby ◽  
Dong-Ju Shin ◽  
...  

ABSTRACT We generated a line of mice in which sterol regulatory element binding protein 1a (SREBP-1a) was specifically inactivated by insertional mutagenesis. Homozygous mutant mice were completely viable despite expressing SREBP-1a mRNA below 5% of normal, and there were minimal effects on expression of either SREBP-1c or -2. Microarray expression studies in liver, where SREBP-1a mRNA is 1/10 the level of the highly similar SREBP-1c, demonstrated that only a few genes were affected. The only downregulated genes directly linked to lipid metabolism were Srebf1 (which encodes SREBP-1) and Acacb (which encodes acetyl coenzyme A [acetyl-CoA] carboxylase 2 [ACC2], a critical regulator of fatty acyl-CoA partitioning between cytosol and mitochondria). ACC2 regulation is particularly important during food restriction. Similar to Acacb knockout mice, SREBP-1a-deficient mice have lower hepatic triglycerides and higher serum ketones during fasting than wild-type mice. SREBP-1a and -1c have identical DNA binding and dimerization domains; thus, the failure of the more abundant SREBP-1c to substitute for activating hepatic ACC2 must relate to more efficient recruitment of transcriptional coactivators to the more potent SREBP-1a activation domain. Our chromatin immunoprecipitation results support this hypothesis.


2003 ◽  
Vol 376 (3) ◽  
pp. 697-705 ◽  
Author(s):  
Pascale G. RIBAUX ◽  
Patrick B. IYNEDJIAN

Previous work showed that acute stimulation of a conditionally active protein kinase B (PKB or cAKT) was sufficient to elicit insulin-like induction of GCK (glucokinase) and SREBP1 (sterol regulatory element-binding protein 1) in hepatocytes [Iynedjian, Roth, Fleischmann and Gjinovci (2000) Biochem. J. 351, 621–627; Fleischmann and Iynedjian (2000) Biochem. J. 349, 13–17]. The objective of the present study was to determine whether activation of PKB during insulin stimulation of hepatocytes was a necessary condition for the induction of the two genes. Activation of PKB by insulin was inhibited by pretreatment of the hepatocytes with C2 ceramide. This resulted in the inhibition of insulin-dependent increases in GCK and SREBP1 mRNAs. A triple mutant of PKB failed to interfere with insulin activation of PKB in hepatocytes even at high overexpression levels achieved after adenovirus transduction. A PKB–CaaX fusion protein, which can act as a dominant-negative inhibitor of PKB activation in other cells, was shown to be constitutively activated in hepatocytes and to trigger insulin-like induction of GCK and SREBP1. In addition, constitutive PKB–CaaX activity caused refractoriness of the hepatocytes to insulin signalling at an upstream step resulting in the inhibition of both extracellular-signal-regulated kinase 1/2 and endogenous PKB activation. The stimulation of gene expression by constitutively active PKB–CaaX and inhibition of the insulin effect by ceramide are compatible with a role for PKB in the insulin-dependent induction of GCK and SREBP1.


Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Elena Bonzón-Kulichenko ◽  
Dominik Schwudke ◽  
Nilda Gallardo ◽  
Eduardo Moltó ◽  
Teresa Fernández-Agulló ◽  
...  

Obesity and type 2 diabetes are associated with insulin and leptin resistance, and increased ceramide contents in target tissues. Because the adipose tissue has become a central focus in these diseases, and leptin-induced increases in insulin sensitivity may be related to effects of leptin on lipid metabolism, we investigated herein whether central leptin was able to regulate total ceramide levels and the expression of enzymes involved in ceramide metabolism in rat white adipose tissue (WAT). After 7 d central leptin treatment, the total content of ceramides was analyzed by quantitative shotgun lipidomics mass spectrometry. The effects of leptin on the expression of several enzymes of the sphingolipid metabolism, sterol regulatory element binding protein (SREBP)-1c, and insulin-induced gene 1 (INSIG-1) in this tissue were studied. Total ceramide levels were also determined after surgical WAT denervation. Central leptin infusion significantly decreased both total ceramide content and the long-chain fatty acid ceramide species in WAT. Concomitant with these results, leptin decreased the mRNA levels of enzymes involved in de novo ceramide synthesis (SPT-1, LASS2, LASS4) and ceramide production from sphingomyelin (SMPD-1/2). The mRNA levels of enzymes of ceramide degradation (Asah1/2) and utilization (sphingomyelin synthase, ceramide kinase, glycosyl-ceramide synthase, GM3 synthase) were also down-regulated. Ceramide-lowering effects of central leptin were prevented by local autonomic nervous system denervation of WAT. Finally, central leptin treatment markedly increased INSIG-1 mRNA expression and impaired SREBP-1c activation in epididymal WAT. These observations indicate that in vivo central leptin, acting through the autonomic nervous system, regulates total ceramide levels and SREBP-1c proteolytic maturation in WAT, probably contributing to improve the overall insulin sensitivity. Central leptin decreases total ceramide levels and prevents sterol regulatory element binding protein (SREBP-1C) proteolytic maturation in white adipose tissue, and probably, in this way, contributes to improve the overall insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document