ceramide content
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 28)

H-INDEX

23
(FIVE YEARS 4)

Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 675
Author(s):  
Justin Carrard ◽  
Hector Gallart-Ayala ◽  
Nadia Weber ◽  
Flora Colledge ◽  
Lukas Streese ◽  
...  

Cardiometabolic diseases (CMD) represent a growing socioeconomic burden and concern for healthcare systems worldwide. Improving patients’ metabolic phenotyping in clinical practice will enable clinicians to better tailor prevention and treatment strategy to individual needs. Recently, elevated levels of specific lipid species, known as ceramides, were shown to predict cardiometabolic outcomes beyond traditional biomarkers such as cholesterol. Preliminary data showed that physical activity, a potent, low-cost, and patient-empowering means to reduce CMD-related burden, influences ceramide levels. While a single bout of physical exercise increases circulating and muscular ceramide levels, regular exercise reduces ceramide content. Additionally, several ceramide species have been reported to be negatively associated with cardiorespiratory fitness, which is a potent health marker reflecting training level. Thus, regular exercise could optimize cardiometabolic health, partly by reversing altered ceramide profiles. This short review provides an overview of ceramide metabolism and its role in cardiometabolic health and diseases, before presenting the effects of exercise on ceramides in humans.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5860
Author(s):  
Shogo Takeda ◽  
Kenchi Miyasaka ◽  
Sarita Shrestha ◽  
Yoshiaki Manse ◽  
Toshio Morikawa ◽  
...  

Tomatoes are widely consumed, however, studies on tomato seeds are limited. In this study, we isolated 11 compounds including saponins and flavonol glycosides from tomato seeds and evaluated their effects on epidermal hydration. Among the isolated compounds, tomato seed saponins (10 µM) significantly increased the mRNA expression of proteins related to epidermal hydration, including filaggrin, involucrin, and enzymes for ceramide synthesis, by 1.32- to 1.91-fold compared with the control in HaCaT cells. Tomato seed saponins (10 µM) also decreased transepidermal water loss by 7 to 13 g/m2·h in the reconstructed human epidermal keratinization (RHEK) models. Quantitative analysis of the ceramide content in the stratum corneum (SC) revealed that lycoperoside H (1–10 µM) is a promising candidate to stimulate ceramide synthesis via the upregulation of ceramide synthase-3, glucosylceramide synthase, and β-glucocerebrosidase, which led to an increase in the total SC ceramides (approximately 1.5-fold) in concert with ceramide (NP) (approximately 2-fold) in the RHEK models. Evaluation of the anti-inflammatory and anti-allergic effects of lycoperoside H demonstrated that lycoperoside H is suggested to act as a partial agonist of the glucocorticoid receptor and exhibits anti-inflammatory effects (10 mg/kg in animal test). These findings indicate that lycoperoside H can improve epidermal dehydration and suppress inflammation by increasing SC ceramide and steroidal anti-inflammatory activity.


2021 ◽  
Vol 22 (17) ◽  
pp. 9287
Author(s):  
Carmela Conte ◽  
Samuela Cataldi ◽  
Cataldo Arcuri ◽  
Alessandra Mirarchi ◽  
Andrea Lazzarini ◽  
...  

The release of exosomes can lead to cell–cell communication. Nutrients such as vitamin D3 and sphingolipids have important roles in many cellular functions, including proliferation, differentiation, senescence, and cancer. However, the specific composition of sphingolipids in exosomes and their changes induced by vitamin D3 treatment have not been elucidated. Here, we initially observed neutral sphingomyelinase and vitamin D receptors in exosomes released from HN9.10 embryonic hippocampal cells. Using ultrafast liquid chromatography tandem mass spectrometry, we showed that exosomes are rich in sphingomyelin species compared to whole cells. To interrogate the possible functions of vitamin D3, we established the optimal conditions of cell treatment and we analyzed exosome composition. Vitamin D3 was identified as responsible for the vitamin D receptor loss, for the increase in neutral sphingomyelinase content and sphingomyelin changes. As a consequence, the generation of ceramide upon vitamin D3 treatment was evident. Incubation of the cells with neutral sphingomyelinase, or the same concentration of ceramide produced in exosomes was necessary and sufficient to stimulate embryonic hippocampal cell differentiation, as vitamin D3. This is the first time that exosome ceramide is interrogated for mediate the effect of vitamin D3 in inducing cell differentiation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kyong-Oh Shin ◽  
Debra A. Crumrine ◽  
Sungeun Kim ◽  
Yerin Lee ◽  
Bogyeong Kim ◽  
...  

Abstract Background Autism, a childhood behavioral disorder, belongs to a large suite of diseases, collectively referred to as autism spectrum disorders (ASD). Though multifactorial in etiology, approximately 10% of ASD are associated with atopic dermatitis (AD). Moreover, ASD prevalence increases further as AD severity worsens, though these disorders share no common causative mutations. We assessed here the link between these two disorders in the standard, valproic acid mouse model of ASD. In prior studies, there was no evidence of skin involvement, but we hypothesized that cutaneous involvement could be detected in experiments conducted in BALB/c mice. BALB/c is an albino, laboratory-bred strain of the house mouse and is among the most widely used inbred strains used in animal experimentation. Methods We performed our studies in valproic acid (VPA)-treated BALB/c hairless mice, a standard mouse model of ASD. Mid-trimester pregnant mice received a single intraperitoneal injection of either valproic acid sodium salt dissolved in saline or saline alone on embryonic day 12.5 and were housed individually until postnatal day 21. Only the brain and epidermis appeared to be affected, while other tissues remain unchanged. At various postnatal time points, brain, skin and blood samples were obtained for histology and for quantitation of tissue sphingolipid content and cytokine levels. Results AD-like changes in ceramide content occurred by day one postpartum in both VPA-treated mouse skin and brain. The temporal co-emergence of AD and ASD, and the AD phenotype-dependent increase in ASD prevalence correlated with early appearance of cytokine markers (i.e., interleukin [IL]-4, 5, and 13), as well as mast cells in skin and brain. The high levels of interferon (IFN)γ not only in skin, but also in brain likely account for a significant decline in esterified very-long-chain N-acyl fatty acids in brain ceramides, again mimicking known IFNγ-induced changes in AD. Conclusion Baseline involvement of both AD and ASD could reflect concurrent neuro- and epidermal toxicity, possibly because both epidermis and neural tissues originate from the embryonic neuroectoderm. These studies illuminate the shared susceptibility of the brain and epidermis to a known neurotoxin, suggesting that the atopic diathesis could be extended to include ASD.


2020 ◽  
Vol 117 (51) ◽  
pp. 32584-32593
Author(s):  
Xiruo Li ◽  
Dongyan Zhang ◽  
Daniel F. Vatner ◽  
Leigh Goedeke ◽  
Sandro M. Hirabara ◽  
...  

Adiponectin has emerged as a potential therapy for type 2 diabetes mellitus, but the molecular mechanism by which adiponectin reverses insulin resistance remains unclear. Two weeks of globular adiponectin (gAcrp30) treatment reduced fasting plasma glucose, triglyceride (TAG), and insulin concentrations and reversed whole-body insulin resistance, which could be attributed to both improved insulin-mediated suppression of endogenous glucose production and increased insulin-stimulated glucose uptake in muscle and adipose tissues. These improvements in liver and muscle sensitivity were associated with ∼50% reductions in liver and muscle TAG and plasma membrane (PM)-associated diacylglycerol (DAG) content and occurred independent of reductions in total ceramide content. Reductions of PM DAG content in liver and skeletal muscle were associated with reduced PKCε translocation in liver and reduced PKCθ and PKCε translocation in skeletal muscle resulting in increased insulin-stimulated insulin receptor tyrosine1162 phosphorylation, IRS-1/IRS-2–associated PI3-kinase activity, and Akt-serine phosphorylation. Both gAcrp30 and full-length adiponectin (Acrp30) treatment increased eNOS/AMPK activation in muscle and muscle fatty acid oxidation. gAcrp30 and Acrp30 infusions also increased TAG uptake in epididymal white adipose tissue (eWAT), which could be attributed to increased lipoprotein lipase (LPL) activity. These data suggest that adiponectin and adiponectin-related molecules reverse lipid-induced liver and muscle insulin resistance by reducing ectopic lipid storage in these organs, resulting in decreased plasma membranesn-1,2-DAG–induced nPKC activity and increased insulin signaling. Adiponectin mediates these effects by both promoting the storage of TAG in eWAT likely through stimulation of LPL as well as by stimulation of AMPK in muscle resulting in increased muscle fat oxidation.


Food Research ◽  
2020 ◽  
Vol 4 (S4) ◽  
pp. 56-64
Author(s):  
C. Paosila ◽  
P. Rumpagaporn ◽  
K. Na Jom

Ceramide is a sphingolipid, which provides health benefits. Gas chromatography coupled with flame ionized detector (GC-FID) was developed for targeted analysis of hydrolyzed ceramide in color rice and by-products. Method validation was done by means of linearity, repeatability and % recovery. R2 of 0.99 by means of linearity equation of the method was obtained. The recovery was in the range of 69.85 – 108.73% with RSD of normalized peak area lower than 10%. Hydrolyzed ceramide was found in unpolished rice, both glutinous and non-glutinous rice and its by-products including, defatted rice bran, rice bran wax and rice bran oil. The relationship between varieties of rice color and ceramide content was classified using principal component analysis (PCA) into 2 groups, including dark and pale color rice group. The highest levels of hydrolyzed ceramide as 21.11±0.02 mg/100 g was found in Mali Nil Surin (MNS), black non-glutinous rice. Whereas white non-glutinous rice named Seebukantang (SBK) contained the lowest content of hydrolyzed ceramide as 12.69±0.03 mg/100 g. The amount of ceramide in by-products found in defatted rice bran, rice bran oil and rice bran wax were 17.43±0.38, 14.67±0.16 and 12.54±0.41 mg/100 g, respectively.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Rita Paroni ◽  
Paola Signorelli ◽  
Alessandra Mirarchi ◽  
Laura Cerquiglini ◽  
...  

Abstract Background In the past two decades, sphingolipids have become increasingly appreciated as bioactive molecules playing important roles in a wide array of pathophysiology mechanisms. Despite advances in the field, sphingolipids as nutrients remain little explored. Today the research is starting to move towards the study of the sphingomyelin content in human breast milk, recommended for feeding infants. Methods In the present study, we performed a lipidomic analysis in human breast milk in relation with maternal diet during pregnancy, in infant formulas, and in commercial whole and semi-skimmed milks for adults. Mediterranean, carnivorous and vegetarian diets were considered. Results The results showed that total sphingomyelin, ceramide and dihydroceramide species are independent on the diet. Interestingly, the milk sphingolipid composition is species-specific. In fact, infant formulas and commercial milks for adults have a lower level of total sphingomyelin and ceramide content than human breast milk with very different composition of each sphingolipid species. Conclusions We conclude that human breast milk is a better source of sphingolipids than infant formulas for baby nutrition with potential implications for the brain development and cognitive functions.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3163
Author(s):  
Samuela Cataldi ◽  
Cataldo Arcuri ◽  
Andrea Lazzarini ◽  
Irina Nakashidze ◽  
Francesco Ragonese ◽  
...  

Glioblastoma is one the most aggressive primary brain tumors in adults, and, despite the fact that radiation and chemotherapy after surgical approaches have been the treatments increasing the survival rates, the prognosis of patients remains poor. Today, the attention is focused on highlighting complementary treatments that can be helpful in improving the classic therapeutic approaches. It is known that 1α,25(OH)2 vitamin D3, a molecule involved in bone metabolism, has many serendipidy effects in cells. It targets normal and cancer cells via genomic pathway by vitamin D3 receptor or via non-genomic pathways. To interrogate possible functions of 1α,25(OH)2 vitamin D3 in multiforme glioblastoma, we used three cell lines, wild-type p53 GL15 and mutant p53 U251 and LN18 cells. We demonstrated that 1α,25(OH)2 vitamin D3 acts via vitamin D receptor in GL15 cells and via neutral sphingomyelinase1, with an enrichment of ceramide pool, in U251 and LN18 cells. Changes in sphingomyelin/ceramide content were considered to be possibly responsible for the differentiating and antiproliferative effect of 1α,25(OH)2 vitamin D in U251 and LN18 cells, as shown, respectively, in vitro by immunofluorescence and in vivo by experiments of xenotransplantation in eggs. This is the first time 1α,25(OH)2 vitamin D3 is interrogated for the response of multiforme glioblastoma cells in dependence on the p53 mutation, and the results define neutral sphingomyelinase1 as a signaling effector.


2020 ◽  
Vol 21 (19) ◽  
pp. 7369
Author(s):  
Iwona Kojta ◽  
Piotr Zabielski ◽  
Kamila Roszczyc-Owsiejczuk ◽  
Monika Imierska ◽  
Emilia Sokołowska ◽  
...  

Skeletal muscle is an important tissue responsible for glucose and lipid metabolism. High-fat diet (HFD) consumption is associated with the accumulation of bioactive lipids: long chain acyl-CoA, diacylglycerols (DAG) and ceramides. This leads to impaired insulin signaling in skeletal muscle. There is little data on the involvement of DAG in the development of these disorders. Therefore, to clarify this enigma, the gene encoding glycerol-3-phosphate acyltransferase enzyme (GPAT, responsible for DAG synthesis) was silenced through shRNA interference in the gastrocnemius muscle of animals with diet-induced insulin resistance. This work shows that HFD induces insulin resistance, which is accompanied by an increase in the concentration of plasma fatty acids and the level of bioactive lipids in muscle. The increase in these lipids inhibits the insulin pathway and reduces muscle glucose uptake. GPAT silencing through electroporation with shRNA plasmid leads to a reduction in DAG and triacylglycerol (TAG) content, an increase in the activity of the insulin pathway and glucose uptake without a significant effect on ceramide content. This work clearly shows that DAG accumulation has a significant effect on the induction of muscle insulin resistance and that inhibition of DAG synthesis through GPAT modulation may be a potential target in the treatment of insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document