scholarly journals Cytoprotective effects of sinapic acid on human keratinocytes (HaCaT) against ultraviolet B

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Gyu Ri Kim ◽  
Kye Hwa Lim
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eui Jeong Han ◽  
Seo-Young Kim ◽  
Hee-Jin Han ◽  
Hyun-Soo Kim ◽  
Kil-Nam Kim ◽  
...  

AbstractThe present study aimed to evaluate the protective effect of a methanol extract of Sargassum horneri (SHM), which contains 6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (HTT) and apo-9′-fucoxanthinone, against ultraviolet B (UVB)-induced cellular damage in human keratinocytes and its underlying mechanism. SHM significantly improved cell viability of UVB-exposed human keratinocytes by reducing the generation of intracellular reactive oxygen species (ROS). Moreover, SHM inhibited UVB exposure-induced apoptosis by reducing the formation of apoptotic bodies and the populations of the sub-G1 hypodiploid cells and the early apoptotic cells by modulating the expression of the anti- and pro-apoptotic molecules, Bcl-2 and Bax, respectively. Furthermore, SHM inhibited NF-κB p65 activation by inducing the activation of Nrf2/HO-1 signaling. The cytoprotective and antiapoptotic activities of SHM are abolished by the inhibition of HO-1 signaling. In further study, SHM restored the skin dryness and skin barrier disruption in UVB-exposed human keratinocytes. Based to these results, our study suggests that SHM protects the cells against UVB-induced cellular damages through the Nrf2/HO-1/NF-κB p65 signaling pathway and may be potentially useful for the prevention of UVB-induced skin damage.


1998 ◽  
Vol 16 ◽  
pp. S69 ◽  
Author(s):  
Koji Sayama ◽  
Hidenori Ichijo ◽  
Kenshi Yamasaki ◽  
Yashushi Hanakawa ◽  
Yuji Shirakata ◽  
...  

2019 ◽  
Vol 20 (4) ◽  
pp. 862 ◽  
Author(s):  
Sunyoung Park ◽  
Eun-Soo Lee ◽  
Nok-Hyun Park ◽  
Kyeonghwan Hwang ◽  
Eun-Gyung Cho

The human skin is the outermost physical barrier and has its own circadian machinery that works either cooperatively with the central clock, or autonomously. Circadian rhythms have been observed in many functions related to epidermal homeostasis including hydration and inflammation, and this functional oscillation is disturbed by ultraviolet radiation (UVR), which is a strong environmental cue. Among the genes estimated to show circadian expression in the skin, metalloproteinase inhibitor 3 (TIMP3), has a rhythmic expression in synchronized human keratinocytes similar to that of the core clock gene PER1 and an epidermal circadian regulatory gene, aquaporin 3 (AQP3) but was antiphase to the core clock gene BMAL1. Tumor necrosis factor-α (TNF-α), the regulatory target of TIMP3 via a disintegrin and metalloproteinase domain 17 (ADAM17), was inversely regulated when TIMP3 expression was downregulated by ultraviolet B (UVB) treatment. When synthetic TIMP3 peptides were applied to the cells, the secretion of TNF-α did not increase following the UVB treatment. Similar to TIMP3 peptides, Camellia sinensis leaf-derived extracts showed a distinguishing efficacy in recovering TIMP3 expression, downregulated by UVB treatment. Together, our results suggest that TIMP3 reversely mediates UVR-induced inflammation by being highly expressed during the daytime; therefore, recovering the circadian expression of TIMP3 using synthetic TIMP3 peptides or bioactive natural ingredients could at least in part inhibit the UVR-induced cellular phenomena.


2014 ◽  
Vol 38 (3) ◽  
pp. 891-900 ◽  
Author(s):  
Jian Zheng ◽  
Mei Jing Piao ◽  
Ki Cheon Kim ◽  
Cheng Wen Yao ◽  
Ji Won Cha ◽  
...  

2019 ◽  
Vol 20 (21) ◽  
pp. 5327 ◽  
Author(s):  
Ortega-Hernández ◽  
Nair ◽  
Welti-Chanes ◽  
Cisneros-Zevallos ◽  
Jacobo-Velázquez

The present study evaluated the effects of ultraviolet B (UVB) radiation and wounding stress, applied alone or combined, on the biosynthesis of phenolic compounds and ascorbic acid in the peel and pulp of red prickly pear (Opuntia ficus-indica cv. Rojo Vigor). Whole and wounded-fruit samples were treated with UVB radiation (6.4 W·m−2) for 0 and 15 min, and stored for 24 h at 16 °C. Phytochemical analyses were performed separately in the peel and pulp. The highest phenolic accumulation occurred after storage of the whole tissue treated with UVB, where the main phenolic compounds accumulated in the peel and pulp were quercetin, sinapic acid, kaempferol, rosmarinic acid, and sinapoyl malate, showing increases of 709.8%, 570.2%, 442.8%, 439.9%, and 186.2%, respectively, as compared with the control before storage. Phenylalanine ammonia-lyase (PAL) activity was increased after storage of the whole and wounded tissue treated with UVB light, and this increase in PAL activity was associated to phenolic accumulation. On the other hand, l-galactono-γ-lactone dehydrogenase (GalLDH) activity and ascorbic acid biosynthesis was enhanced due to UVB radiation, and the effect was increased when UVB was applied in the wounded tissue showing 125.1% and 94.1% higher vitamin C content after storage when compared with the control. Respiration rate was increased due to wounding stress, whereas ethylene production was increased by wounding and UVB radiation in prickly pears. Results allowed the generation of a physiological model explaining the UVB and wound-induced accumulation of phenolic compounds and ascorbic acid in prickly pears, where wounding facilitates UVB to access the underlying tissue and enhances an apparent synergistic response.


Sign in / Sign up

Export Citation Format

Share Document