scholarly journals Modeling of the effect of temperature on developmental rate of common green lacewing, Chrysoperla carnea (Steph.) (Neuroptera: Chrysopidae)

2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Hossein Ranjbar Aghdam ◽  
Zahra Nemati

Abstract Background The common green lacewing Chrysoperla carnea (Steph.) (Neuroptera: Chrysopidae) is a polyphagous and efficient predatory species commonly found in a wide range of agricultural habitats. It plays an important role in biological control of  pests. Main body The effect of temperature on developmental rate of the predator C. carnea was studied at 7 constant temperatures, 15, 20, 25, 27, 30, 32, and 35 °C, 50 ± 10% RH, and a photoperiod of 16:8 h (L:D). Six nonlinear models were evaluated to determine the trend of developmental rate of the predator in examined temperatures and to estimate thermal thresholds of development. Nonlinear models were evaluated based on coefficient of determination (R2), adjusted coefficient of determination (R2adj), residual sum of squares (RSS), and Akaike information criterion (AIC), beside biological significance of the estimated values for the model parameters. Among evaluated nonlinear models, Lactin-2 for all immature stages was the best-fitted model on observations, considering statistical criteria and biological significance of the estimations. The values of the lower temperature threshold by using Lacin-2 were 9.90, 10.90, 11.90, 11.40, 11.11, 11.61, and 11.30 °C for incubation period, 1st, 2nd, and 3rd larval instars, overall larval period, and pupal and total immature stages, respectively. The values of the upper temperature threshold for the mentioned developmental stages were 33.82, 37.66, 33.14, 34.04, 33.58, 32.14, and 32.18 °C, respectively. Estimated values for the optimal temperature for incubation period, 1st, 2nd, and 3rd larval instars, overall larval period, and pupal and total immature stages were 30.69, 30.22, 30.90, 30.34, 30.90, 31.75, and 31.72 °C, respectively. Short conclusion The results, in addition to determine thermal tolerance for the development of C. carnea, provided advantage information for better use of C. carnea in biological control programs.

2020 ◽  
Vol 25 (3) ◽  
pp. 538-547 ◽  
Author(s):  
Azadeh Farazmand ◽  
Masood Amir-maafi ◽  
Remzi Atlihan

In this study, developmental time of Amblyseius swirskii Athias-Henriot feeding on immature stages of Tetranychus urticae Koch was evaluated at eight constant temperatures (15, 20, 25, 27.5, 30, 32.5, 35, and 37.5 °C) providing 60±5% RH and a photoperiod of 16 L: 8 D. Duration of the egg to adult developmental time decreased sharply with increasing temperature, except at 37.5°C. To describe the developmental rate of A. swirskii as a function of temperature, one linear and 9 nonlinear models (Logan-6, Logan-10, Lactin-1, Lactin-2, Briere-1, Briere-2, Analytis-3, Polynomial, and Equation-16) were fitted. The lower temperature threshold (T0) and the thermal constant (K) were estimated by the linear model for the total immature stage as 7.90 °C and 140.85 DD, respectively. Based on the Akaike Information Criterion (AIC) and R2adj, Polynomial, Analytis-3, Analytis-3, Logan-10 and Briere-2 were the best models for eggs, larvae, protonymphs, deutonymphs and total immature stages of A. swirskii, respectively. Our findings showed that development and predation of A. swirskii occurs in a wide range of temperatures. Therefore, this predatory mite could be applied in control of T. urticae in different weather conditions.


Author(s):  
Azadeh Farazmand ◽  
Masood Amir-Maafi

Abstract In this research, functional responses of Amblyseius swirskii Athias-Henriot preying on different Tetranychus urticae Koch nymphal densities (2, 4, 8, 16, 32, 64, and 128) were studied at eight constant temperatures (15, 20, 25, 27.5, 30, 32.5, 35 and 37.5°C) in a circular Petri dish (3-cm diameter × 1-cm height) under lab conditions. At all temperatures, the logistic regression showed a type II functional response. A nonlinear relationship was found between temperature and attack rate and the reciprocal of handling time. The reciprocal of handling time decreased exponentially with increasing temperature. In contrast, the attack rate grew rapidly with increasing temperatures up to an optimum, showing a decreasing trend at higher temperatures. In order to quantify the functional response of A. swirskii over a broad range of temperatures and to gain a better estimation of attack rate and handling time, a temperature-settled functional response equation was suited to our data. Our model showed that the number of prey consumed increased with rising prey density. Also, the predation rates increased with increasing temperatures but decreased at extremely high temperatures. Based on our model, the predation rate begins at the lower temperature threshold (11.73°C) and reaches its peak at upper temperature threshold (29.43°C). The coefficient of determination (R2) of the random predator model was 0.99 for all temperatures. The capability of A. swirskii to search and consume T. urticae over a wide range of temperatures makes it a good agent for natural control of T. urticae in greenhouses.


2019 ◽  
Vol 24 (2) ◽  
pp. 231 ◽  
Author(s):  
Iman Hassanvand ◽  
Shahriar Jafari ◽  
Masoumeh Khanjani

The effects of six ambient temperatures (15, 20, 25, 30, 35 and 37.5ºC) on life table parameters of Tetranychus kanzawai Kishida (Tetranychidae) were studied under laboratory conditions on soybean (Glycine max (L.) Merrill). Total immature developmental time of females at the above-mentioned temperatures was 28.55, 16.34, 9.01, 6.96, 5.56 and 5.65 days, respectively. A linear and two nonlinear models of Lactin and SSI were fitted to developmental rate of immature stages of T. kanzawai to predict the developmental rate as a function of temperature, as well as to estimate the thermal constant (k) and critical temperatures. The estimated k for total immature developmental time of females and males was 134.58 and 126.74 DD, respectively. The estimated Topt and Tmax by Lactin model for overall immature stages were 36.20 and 40.70ºC, respectively. Intrinsic optimum temperature (TФ) and T1 (Topt) by SSI model for total immature stages was estimated to be 23.23 and 35.71ºC, respectively. Also the estimated TL and Th of SSI model for overall immature stage were 09.21 and 38.46ºC, respectively. The longest and shortest adult longevity was observed at 15°C (60.63 days), and 37.5°C (7.34 days), respectively. Mated females laid highest and lowest eggs at 25°C (237.96 eggs) and 37.5°C (30.54 eggs), respectively. The rm values ranged from 0.356 day-1 at 30°C to 0.089 day-1at 15°C. The highest value of R0 was 163.55 offspring female-1 at 25°C. The presented information in this study provided new perspective to better management of T. kanzawai on apple trees in Iran.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Fatemeh Soltani Orang ◽  
Hossein Ranjbar Aghdam ◽  
Habib Abbasipour ◽  
Alireza Askarianzadeh

2017 ◽  
Vol 20 (1) ◽  
pp. 3 ◽  
Author(s):  
H. Ranjbar Aghdam ◽  
Y. Fathipour ◽  
D. C. Kontodimas

Developmental rate of immature stages and age-specific fertility of females of codling moth at constant temperatures was modeled using non-linear models. The equations of Enkegaard, Analytis, and Bieri 1 and 2 were evaluated based on the value of adjusted R2 (R2adj) and Akaike information criterion (AIC) besides coefficient of determination (R2) and residual sum of squares (RSS). All models have goodness of fit to data especially for development [R2, R2adj, RSS and AIC ranged 0.9673-0.9917, 0.8601-0.9861, 0.08-6.7x10-4 and (-75.29) – (-46.26) respectively]. Optimum temperature (Topt) and upper threshold (Tmax) were calculated accurately (Topt and Tmax ranged 29.9-31.2oC and 35.9-36.7oC) by all models. Lower temperature threshold (Tmin) was calculated accurately by Bieri-1 model (9,9-10,8oC) whereas Analytis model (7,0-8,4oC) underestimated it. As far as fertility is concerned the respective values were better fitted near the optimum temperature (in 30oC) [R2 ,R2adj, RSS and AIC ranged 0,6966-0,7744, 0,5756-0,6455, 2,44-3,33 x10-4 and (-9,15)-7,15 respectively].


2017 ◽  
Vol 22 (3) ◽  
pp. 410 ◽  
Author(s):  
Jahanshir Shakarami ◽  
Fereshteh Bazgir

Eotetranychus hirsti Pritchard & Baker (Tetranychidae) is one of the important pests of fig trees that is widely distributed in fig orchards of Iran. The predatory mite Phytoseius plumifer Canestrini & Fanzago is a phytoseiid mite on fig that can feed and reproduce on E. hirsti. The effect of four constant temperatures (20, 25, 30 and 35°C) on demographic parameters of P. plumifer fed on nymphal stages of E. hirstiwas determined under laboratory conditions at 50 ± 5% RH and a photoperiod of 16:8 h (L: D). The total developmental time of immature stages of this predator decreased with increasing temperature from 20°C to 35°C, and varied from 17.13±0.23 to 6.55±0.19 days for females. The lower temperature threshold (Tmin) and thermal constant (K) for the total immature stages of this predator was estimated 10.33˚C and 166.67 degree-days by the ordinary linear model, 11.17˚C and 147.87 degree-days by the Ikemoto linear model, respectively. Female longevity was 67.79, 47.00, 35.11, and 27.42 days at 20, 25, 30 and 35°C, respectively. The highest values of total fecundity and daily fecundity were obtained at 25˚C (35.71±1.73 eggs) and 30˚C (1.57±0.02 eggs), respectively. The value of the intrinsic rate of increase (rm) increased as increasing temperature from 20°C (0.064±0.0012 day−1) to 30°C (0.180±0.0023 day−1), and then decreased at 35°C (0.153±0.0037 day−1). The highest and lowest values of the mean generation time (T) were 32.75±0.95 and 14.18±0.51 days, which were obtained at 20°C and 35°C, respectively. The results of this study revealed that of P. plumifer is effective predator of the fig spider mite and develops effectively at a broad range of temperatures.


2019 ◽  
Author(s):  
Jarmo Mäkelä ◽  
Jürgen Knauer ◽  
Mika Aurela ◽  
Andrew Black ◽  
Martin Heimann ◽  
...  

Abstract. We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10 FLUXNET coniferous evergreen sites in the Boreal zone. The parameter posterior distributions were generated by adaptive population importance sampler and the optimal values by a simple stochastic optimisation algorithm. The observations used to constrain the model are evapotranspiration (ET) and gross primary production (GPP). We identified the key parameters in the calibration process. These parameters control the soil moisture stress function and the overall rate of carbon fixation. We were able to improve the coefficient of determination and the model bias with all stomatal conductance formulations. There was no clear candidate for the best stomatal conductance model, although certain versions produced better estimates depending on the examined variable (ET, GPP) and the used metric. We were also able to significantly enhance the model behaviour during a drought event in a Finnish Scots pine forest site. The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity. This modification enabled the model to correctly time and replicate the springtime increase in GPP (and ET) for conifers throughout the measurements sites used in this study.


2017 ◽  
Vol 48 (1) ◽  
Author(s):  
Thais Destefani Ribeiro ◽  
Taciana Villela Savian ◽  
Tales Jesus Fernandes ◽  
Joel Augusto Muniz

ABSTRACT: The goal of this study was to elucidate the growth and development of the Asian pear fruit, on the grounds of length, diameter and fresh weight determined over time, using the non-linear Gompertz and Logistic models. The specifications of the models were assessed utilizing the R statistical software, via the least squares method and iterative Gauss-Newton process (DRAPER & SMITH, 2014). The residual standard deviation, adjusted coefficient of determination and the Akaike information criterion were used to compare the models. The residual correlations, observed in the data for length and diameter, were modeled using the second-order regression process to render the residuals independent. The logistic model was highly suitable in demonstrating the data, revealing the Asian pear fruit growth to be sigmoid in shape, showing remarkable development for three variables. It showed an average of up to 125 days for length and diameter and 140 days for fresh fruit weight, with values of 72mm length, 80mm diameter and 224g heavy fat.


1991 ◽  
Vol 39 (2) ◽  
pp. 191 ◽  
Author(s):  
JG Hamilton ◽  
MP Zalucki

C. plebejana were reared from egg to adult at a range of constant temperatures. At 10-degrees-C no immature stages survived. Development rates increased over the temperature range 14-34-degrees-C; these were simulated with a non-linear model. Females emerged before males. Fecundity decreased with increased rearing temperature as a direct result of reduced adult female weight. At 34-degrees-C development rate and survival were reduced and all eggs laid were infertile. Optimum temperature for population increase was 28-degrees-C. Validation of a non-linear model for development rate shows that the species of host-plant affects mean development rates of tipworm. Although 5.3 tipworm generations are possible on cotton annually, only one occurs; reasons for this are suggested.


Sign in / Sign up

Export Citation Format

Share Document