scholarly journals LSGAN-AT: enhancing malware detector robustness against adversarial examples

Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jianhua Wang ◽  
Xiaolin Chang ◽  
Yixiang Wang ◽  
Ricardo J. Rodríguez ◽  
Jianan Zhang

AbstractAdversarial Malware Example (AME)-based adversarial training can effectively enhance the robustness of Machine Learning (ML)-based malware detectors against AME. AME quality is a key factor to the robustness enhancement. Generative Adversarial Network (GAN) is a kind of AME generation method, but the existing GAN-based AME generation methods have the issues of inadequate optimization, mode collapse and training instability. In this paper, we propose a novel approach (denote as LSGAN-AT) to enhance ML-based malware detector robustness against Adversarial Examples, which includes LSGAN module and AT module. LSGAN module can generate more effective and smoother AME by utilizing brand-new network structures and Least Square (LS) loss to optimize boundary samples. AT module makes adversarial training using AME generated by LSGAN to generate ML-based Robust Malware Detector (RMD). Extensive experiment results validate the better transferability of AME in terms of attacking 6 ML detectors and the RMD transferability in terms of resisting the MalGAN black-box attack. The results also verify the performance of the generated RMD in the recognition rate of AME.

Author(s):  
Aishan Liu ◽  
Xianglong Liu ◽  
Jiaxin Fan ◽  
Yuqing Ma ◽  
Anlan Zhang ◽  
...  

Deep neural networks (DNNs) are vulnerable to adversarial examples where inputs with imperceptible perturbations mislead DNNs to incorrect results. Recently, adversarial patch, with noise confined to a small and localized patch, emerged for its easy accessibility in real-world. However, existing attack strategies are still far from generating visually natural patches with strong attacking ability, since they often ignore the perceptual sensitivity of the attacked network to the adversarial patch, including both the correlations with the image context and the visual attention. To address this problem, this paper proposes a perceptual-sensitive generative adversarial network (PS-GAN) that can simultaneously enhance the visual fidelity and the attacking ability for the adversarial patch. To improve the visual fidelity, we treat the patch generation as a patch-to-patch translation via an adversarial process, feeding any types of seed patch and outputting the similar adversarial patch with high perceptual correlation with the attacked image. To further enhance the attacking ability, an attention mechanism coupled with adversarial generation is introduced to predict the critical attacking areas for placing the patches, which can help producing more realistic and aggressive patches. Extensive experiments under semi-whitebox and black-box settings on two large-scale datasets GTSRB and ImageNet demonstrate that the proposed PS-GAN outperforms state-of-the-art adversarial patch attack methods.


2020 ◽  
Vol 34 (07) ◽  
pp. 10909-10916
Author(s):  
Ligong Han ◽  
Ruijiang Gao ◽  
Mun Kim ◽  
Xin Tao ◽  
Bo Liu ◽  
...  

Conditional generative adversarial networks have shown exceptional generation performance over the past few years. However, they require large numbers of annotations. To address this problem, we propose a novel generative adversarial network utilizing weak supervision in the form of pairwise comparisons (PC-GAN) for image attribute editing. In the light of Bayesian uncertainty estimation and noise-tolerant adversarial training, PC-GAN can estimate attribute rating efficiently and demonstrate robust performance in noise resistance. Through extensive experiments, we show both qualitatively and quantitatively that PC-GAN performs comparably with fully-supervised methods and outperforms unsupervised baselines. Code and Supplementary can be found on the project website*.


2020 ◽  
Vol 10 (22) ◽  
pp. 8079
Author(s):  
Sanglee Park ◽  
Jungmin So

State-of-the-art neural network models are actively used in various fields, but it is well-known that they are vulnerable to adversarial example attacks. Throughout the efforts to make the models robust against adversarial example attacks, it has been found to be a very difficult task. While many defense approaches were shown to be not effective, adversarial training remains as one of the promising methods. In adversarial training, the training data are augmented by “adversarial” samples generated using an attack algorithm. If the attacker uses a similar attack algorithm to generate adversarial examples, the adversarially trained network can be quite robust to the attack. However, there are numerous ways of creating adversarial examples, and the defender does not know what algorithm the attacker may use. A natural question is: Can we use adversarial training to train a model robust to multiple types of attack? Previous work have shown that, when a network is trained with adversarial examples generated from multiple attack methods, the network is still vulnerable to white-box attacks where the attacker has complete access to the model parameters. In this paper, we study this question in the context of black-box attacks, which can be a more realistic assumption for practical applications. Experiments with the MNIST dataset show that adversarially training a network with an attack method helps defending against that particular attack method, but has limited effect for other attack methods. In addition, even if the defender trains a network with multiple types of adversarial examples and the attacker attacks with one of the methods, the network could lose accuracy to the attack if the attacker uses a different data augmentation strategy on the target network. These results show that it is very difficult to make a robust network using adversarial training, even for black-box settings where the attacker has restricted information on the target network.


Author(s):  
Chaowei Xiao ◽  
Bo Li ◽  
Jun-yan Zhu ◽  
Warren He ◽  
Mingyan Liu ◽  
...  

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial exam- ples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply Adv- GAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.


Author(s):  
Xingxing Wei ◽  
Siyuan Liang ◽  
Ning Chen ◽  
Xiaochun Cao

Identifying adversarial examples is beneficial for understanding deep networks and developing robust models. However, existing attacking methods for image object detection have two limitations: weak transferability---the generated adversarial examples often have a low success rate to attack other kinds of detection methods, and high computation cost---they need much time to deal with video data, where many frames need polluting. To address these issues, we present a generative method to obtain adversarial images and videos, thereby significantly reducing the processing time. To enhance transferability, we manipulate the feature maps extracted by a feature network, which usually constitutes the basis of object detectors. Our method is based on the Generative Adversarial Network (GAN) framework, where we combine a high-level class loss and a low-level feature loss to jointly train the adversarial example generator. Experimental results on PASCAL VOC and ImageNet VID datasets show that our method efficiently generates image and video adversarial examples, and more importantly, these adversarial examples have better transferability, therefore being able to simultaneously attack two kinds of  representative object detection models: proposal based models like Faster-RCNN and regression based models like SSD.


Author(s):  
Felix Jimenez ◽  
Amanda Koepke ◽  
Mary Gregg ◽  
Michael Frey

A generative adversarial network (GAN) is an artificial neural network with a distinctive training architecture, designed to createexamples that faithfully reproduce a target distribution. GANs have recently had particular success in applications involvinghigh-dimensional distributions in areas such as image processing. Little work has been reported for low dimensions, where properties of GANs may be better identified and understood. We studied GAN performance in simulated low-dimensional settings, allowing us totransparently assess effects of target distribution complexity and training data sample size on GAN performance in a simpleexperiment. This experiment revealed two important forms of GAN error, tail underfilling and bridge bias, where the latter is analogousto the tunneling observed in high-dimensional GANs.


Author(s):  
Pingyang Dai ◽  
Rongrong Ji ◽  
Haibin Wang ◽  
Qiong Wu ◽  
Yuyu Huang

Person re-identification (Re-ID) is an important task in video surveillance which automatically searches and identifies people across different cameras. Despite the extensive Re-ID progress in RGB cameras, few works have studied the Re-ID between infrared and RGB images, which is essentially a cross-modality problem and widely encountered in real-world scenarios. The key challenge lies in two folds, i.e., the lack of discriminative information to re-identify the same person between RGB and infrared modalities, and the difficulty to learn a robust metric towards such a large-scale cross-modality retrieval. In this paper, we tackle the above two challenges by proposing a novel cross-modality generative adversarial network (termed cmGAN). To handle the issue of insufficient discriminative information, we leverage the cutting-edge generative adversarial training to design our own discriminator to learn discriminative feature representation from different modalities. To handle the issue of large-scale cross-modality metric learning, we integrates both identification loss and cross-modality triplet loss, which minimize inter-class ambiguity while maximizing cross-modality similarity among instances. The entire cmGAN can be trained in an end-to-end manner by using standard deep neural network framework. We have quantized the performance of our work in the newly-released SYSU RGB-IR Re-ID benchmark, and have reported superior performance, i.e., Cumulative Match Characteristic curve (CMC) and Mean Average Precision (MAP), over the state-of-the-art works [Wu et al., 2017], respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fangchao Yu ◽  
Li Wang ◽  
Xianjin Fang ◽  
Youwen Zhang

Deep neural network approaches have made remarkable progress in many machine learning tasks. However, the latest research indicates that they are vulnerable to adversarial perturbations. An adversary can easily mislead the network models by adding well-designed perturbations to the input. The cause of the adversarial examples is unclear. Therefore, it is challenging to build a defense mechanism. In this paper, we propose an image-to-image translation model to defend against adversarial examples. The proposed model is based on a conditional generative adversarial network, which consists of a generator and a discriminator. The generator is used to eliminate adversarial perturbations in the input. The discriminator is used to distinguish generated data from original clean data to improve the training process. In other words, our approach can map the adversarial images to the clean images, which are then fed to the target deep learning model. The defense mechanism is independent of the target model, and the structure of the framework is universal. A series of experiments conducted on MNIST and CIFAR10 show that the proposed method can defend against multiple types of attacks while maintaining good performance.


2020 ◽  
Vol 39 (5) ◽  
pp. 7085-7095
Author(s):  
Shuqi Liu ◽  
Mingwen Shao ◽  
Xinping Liu

In recent years, deep neural networks have made significant progress in image classification, object detection and face recognition. However, they still have the problem of misclassification when facing adversarial examples. In order to address security issue and improve the robustness of the neural network, we propose a novel defense network based on generative adversarial network (GAN). The distribution of clean - and adversarial examples are matched to solve the mentioned problem. This guides the network to remove invisible noise accurately, and restore the adversarial example to a clean example to achieve the effect of defense. In addition, in order to maintain the classification accuracy of clean examples and improve the fidelity of neural network, we input clean examples into proposed network for denoising. Our method can effectively remove the noise of the adversarial examples, so that the denoised adversarial examples can be correctly classified. In this paper, extensive experiments are conducted on five benchmark datasets, namely MNIST, Fashion-MNIST, CIFAR10, CIFAR100 and ImageNet. Moreover, six mainstream attack methods are adopted to test the robustness of our defense method including FGSM, PGD, MIM, JSMA, CW and Deep-Fool. Results show that our method has strong defensive capabilities against the tested attack methods, which confirms the effectiveness of the proposed method.


2021 ◽  
Vol 13 (21) ◽  
pp. 4358
Author(s):  
Chuan Du ◽  
Lei Zhang

Some recent articles have revealed that synthetic aperture radar automatic target recognition (SAR-ATR) models based on deep learning are vulnerable to the attacks of adversarial examples and cause security problems. The adversarial attack can make a deep convolutional neural network (CNN)-based SAR-ATR system output the intended wrong label predictions by adding small adversarial perturbations to the SAR images. The existing optimization-based adversarial attack methods generate adversarial examples by minimizing the mean-squared reconstruction error, causing smooth target edge and blurry weak scattering centers in SAR images. In this paper, we build a UNet-generative adversarial network (GAN) to refine the generation of the SAR-ATR models’ adversarial examples. The UNet learns the separable features of the targets and generates the adversarial examples of SAR images. The GAN makes the generated adversarial examples approximate to real SAR images (with sharp target edge and explicit weak scattering centers) and improves the generation efficiency. We carry out abundant experiments using the proposed adversarial attack algorithm to fool the SAR-ATR models based on several advanced CNNs, which are trained on the measured SAR images of the ground vehicle targets. The quantitative and qualitative results demonstrate the high-quality adversarial example generation and excellent attack effectiveness and efficiency improvement.


Sign in / Sign up

Export Citation Format

Share Document