scholarly journals α-Terpineol fumigation alleviates negative plant-soil feedbacks of Panax notoginseng via suppressing Ascomycota and enriching antagonistic bacteria

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chen Ye ◽  
Yixiang Liu ◽  
Junxing Zhang ◽  
Tianyao Li ◽  
Yijie Zhang ◽  
...  

AbstractThe accumulation of soil-borne pathogens is the main driving factor of negative plant-soil feedbacks (NPSFs), which seriously restricts the sustainable development of agriculture. Using natural volatile organic compounds (VOCs) from plants or microorganisms as biofumigants is an emerging strategy to alleviate NPSFs in an environmentally-friendly way. Here, we identified α-terpineol from the VOCs of pine needles, confirmed the ability of α-terpineol fumigation in alleviating the NPSF of Panax notoginseng via significantly reducing seed decay rate, and also deciphered the underlying mechanism by which the soil microbial community is modified. α-Terpineol fumigation could suppress culturable fungi but enrich bacteria in a dose-dependent manner. Network analysis with high-throughput sequencing data revealed that α-terpineol could distinctly modify both fungal and bacterial communities. In detail, α-terpineol significantly suppressed the relative abundance of Ascomycota from 64.04 to 32.26%, but enriched the relative abundance of Proteobacteria, Acidobacteria and Actinobacteria. Subnetwork analysis further demonstrated that α-terpineol could directly or indirectly suppress fungal pathogens and enrich plant growth-promoting rhizobacteria (PGPRs). In vitro fumigation and co-culture experiments with culturable isolates validated these findings. The antagonism between beneficial bacteria and pathogens, and the synergistic growth promotion among α-terpineol-enriched bacteria might be involved in soil microbial community assembly. In summary, α-terpineol fumigation could directly or indirectly modify the soil microbial community to alleviate NPSFs, especially by suppressing fungal pathogens and enriching beneficial bacteria. This study suggests that VOCs from natural products are worth developing as biofumigants due to their multiple functions in modifying the soil microbial community.

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Xuemin Wei ◽  
Xiaoyue Wang ◽  
Pei Cao ◽  
Zitong Gao ◽  
Amanda Juan Chen ◽  
...  

Panax ginseng Meyer, a valuable medicinal plant, is severely threatened by rusty root, a condition that greatly affects its yield and quality. Studies investigating the relationship between soil microbial community composition and rusty roots are vital for the production of high-quality ginseng. Here, high-throughput sequencing was employed to systematically characterize changes in the soil microbial community associated with rusty roots. Fungal diversity was lower in the soils of rusty root-affected P. ginseng than in those of healthy plants. Importantly, principal coordinate analysis separated the fungal communities in the rhizosphere soils of rusty root-affected ginseng from those of healthy plants. The dominant bacterial and fungal genera differed significantly between rhizosphere soils of healthy and rusty root-affected P. ginseng, and linear discriminant analysis effect size (LEfSe) further indicated a strong imbalance in the soil microbial community of diseased plants. Significantly enriched bacterial genera (including Rhodomicrobium, Knoellia, Nakamurella, Asticcacaulis, and Actinomadura) were mainly detected in the soil of rusty root-affected P. ginseng, whereas significantly enriched fungal genera (including Xenopolyscytalum, Arthrobotrys, Chalara, Cryptococcus, and Scutellinia) were primarily detected in the soil of healthy plants. Importantly, five fungal genera (Cylindrocarpon, Acrophialophora, Alternaria, Doratomyces, and Fusarium) were significantly enriched in the soil of rusty root-affected plants compared with that of healthy plants, suggesting that an increase in the relative abundance of these pathogenic fungi (Cylindrocarpon, Alternaria, and Fusarium) may be associated with ginseng rusty roots. Additionally, this study is the first to report that an increase in the relative abundances of Acrophialophora and Doratomyces in the rhizosphere of P. ginseng may be associated with the onset of rusty root symptoms in this plant. Our findings provide potentially useful information for developing biological control strategies against rusty root, as well as scope for future screening of fungal pathogens in rusty roots of P. ginseng.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 513
Author(s):  
María del Mar Montiel-Rozas ◽  
Miguel Ángel Díez-Rojo ◽  
Margarita Ros ◽  
José Antonio Pascual

In this field study, the fungicidal and nematicidal activity of two plant extracts (Larrea spp. (LR), Liquidambar spp. (LQ)), and an organosulfur soil fungicide metam sodium alone (MS), and a mix of LR and MS (LR + MS) was assayed under pepper cropping in southeastern Spain. Metam sodium treatments (MS and LR + MS) produced the highest crop yields and were more effective in controlling root-knot nematodes and fungal pathogens (Fusarium, Pythium, and Rhizoctonia solani) than the plant extracts treatments (LQ and LR). Furthermore, the effect of the metam sodium treatments applied negatively affected the soil microbial community, principally bacteria, but not fungi. These microbial community changes of the soil were principally observed after treatment application; the differences between the treatments were reduced at the end of the experiment, when recovery of the soil microbiota communities occurred.


2021 ◽  
Author(s):  
Alejandro Atenas ◽  
Felipe Aburto ◽  
Rodrigo Hasbun ◽  
Carolina Merino

<p>Soil microorganisms are an essential component of forest ecosystems being directly involved in the decomposition of organic matter and the mineralization of nutrients. Anthropogenic disturbances such as logging and livestock modify the structure and composition of forests and also the structure and diversity of soil microbial communities changing critical biogeochemical processes in the soil. In this research we evaluated the effect of anthropic disturbance on the soil in a degradation gradient of Andean temperate forest. This gradient comprises mature forest stands dominated by <em>Nothofagus dombeyii</em>, secondary forests dominated by <em>Nothofagus alpina</em> with medium degradation, a highly degraded forests dominated by <em>Nothofagus obliqua</em> and a highly degraded grassland. We evaluate the reservoir of the main soil nutrients (TC, TN, NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>) and the structure, diversity and functions of the soil microbial community (bacteria and fungi) via NGS-Illumina sequencing and metagenomic análisis with DADA2 pipeline in R-project. The results show a higher amount of TC, TN, NO<sub>3</sub><sup>-</sup> and C:N ratio in the most degraded condition (degraded grassland). There are no significant differences in the amount of TC, TN and NH<sub>4</sub><sup>+</sup> along the forest degradation gradient. This reflects a C:N:P stoichiometry that tends to decrease as forest degradation increases. The soil bacteria community was mainly dominated by Phyla <em>Proteobacteria </em>(45.35%), <em>Acidobacteria </em>(20.73%), <em>Actinobacteria </em>(12.59%) and <em>Bacteroidetes </em>(7.32%). At genus level there are significant differences, <em>Bradyrhizobium </em>has a higher relative abundance in the condition of mature forest which tends to decrease along the gradient of degradation forest. The soil fungi community was dominated by the Phyla <em>Ascomycota </em>(42.11%), <em>Mortierellomycota </em>(28.74%), <em>Basidiomycota </em>(24.61%) and <em>Mucoromycota </em>(2.06%). At genus level the condition of degraded grassland has significantly lower relative abundance of the genera <em>Mortierella </em>and <em>Cortinarius</em>. The degraded grassland soil microbial community is significantly less diverse in terms of bacteria (D' = 0.47±0.04) however it is significantly more diverse in terms of fungi (H' = 5.11±0.33).</p>


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 161 ◽  
Author(s):  
Pan Wan ◽  
Gongqiao Zhang ◽  
Zhonghua Zhao ◽  
Yanbo Hu ◽  
Wenzhen Liu ◽  
...  

One of the aims of sustainable forest management is to preserve the diversity and resilience of ecosystems. Unfortunately, changes in the soil microbial communities after forest management remain unclear. We analyzed and compared the soil microbial community of a natural Quercus aliena var. acuteserrata forest after four years of four different management methods using high-throughput sequencing technology. The forest management methods were close-to-nature management (CNFM), structure-based forest management (SBFM), secondary forest comprehensive silviculture (SFCS) and unmanaged control (CK). The results showed that: (1) the soil microbial community diversity indices were not significantly different among the different management methods. (2) The relative abundance of Proteobacteria in the SBFM treatment was lower than in the CK treatment, while the relative abundance of Acidobacteria in the SBFM was significantly higher than that in the CK treatment. The relative abundance of Ascomycota was highest in the CNFM treatment, and that of Basidiomycota was lowest in the CNFM treatment. However, the relative abundance of dominant bacterial and fungal phyla was not significantly different in CK and SFCS. (3) Redundancy analysis (RDA) showed that the soil organic matter (SOM), total nitrogen (TN), and available nitrogen (AN) significantly correlated with the bacterial communities, and the available potassium (AK) was the only soil nutrient, which significantly correlated with the composition of the fungal communities. The short-term SBFM treatment altered microbial bacterial community compositions, which may be attributed to the phyla present (e.g., Proteobacteria and Acidobacteria), and the short-term CNFM treatment altered microbial fungal community compositions, which may be attributed to the phyla present (e.g., Ascomycota and Basidiomycota). Furthermore, soil nutrients could affect the dominant soil microbial communities, and its influence was greater on the bacterial community than on the fungal community.


2020 ◽  
Author(s):  
Yang Yu ◽  
Lang Zheng ◽  
Yijun Zhou ◽  
Weiguo Sang ◽  
Jianing Zhao ◽  
...  

Abstract Aims Grassland degradation represents a major challenge in grassland productivity. This process has dramatic impacts on energy flows and soil nutrient dynamics and therefore may directly or indirectly influence soil microbes residing in surface soils. Here we aim to (1) examine changes in soil microbial composition, diversity, and functionality in response to different levels of grassland degradation (i.e., non-degraded, moderately degraded and severely degraded) in a temperate grassland in Inner Mongolia, and (2) elucidate biotic and abiotic factors that are responsible to these changes. Methods The composition structure of soil microbial community was determined by high-throughput sequencing. The functionality of bacterial communities was examined using the tool of FAPROTAX while functional guilds of fungal communities was quantified using the FUNGuild Pipeline. Important Findings Grassland degradation significantly decreased soil bacterial diversity but had no effect on fungal diversity. Belowground biomass, soil organic carbon, and total nitrogen were positively related to changes in diversity of bacterial community. Grassland degradation significantly increased the relative abundance of Chloroflexi (from 2.48% to 8.40%), and decreased Firmicutes (from 3.62% to 1.08%) of bacterial community. Degradation also significantly increased the relative abundance of Glomeromycota (from 0.17% to 1.53%), and decreased Basidiomycota (from 19.30% to 4.83%) of fungal community. The relative abundance of pathogenic fungi (Didymella and Fusarium) decreased significantly in response to degradation. In addition, degradation had a significant impact on putative functionality of soil bacteria related to soil carbon and nitrogen cycling. Our results suggest that soil bacterial community was more sensitive than fungal community in response to degradation in this temperate grassland.


2022 ◽  
Vol 8 (1) ◽  
pp. 63
Author(s):  
Haiyan Wang ◽  
Rong Zhang ◽  
Yunfei Mao ◽  
Weitao Jiang ◽  
Xuesen Chen ◽  
...  

Trichoderma asperellum strain 6S-2 with biocontrol effects and potential growth-promoting properties was made into a fungal fertilizer for the prevention of apple replant disease (ARD). 6S-2 fertilizer not only promoted the growth of Malus hupehensis Rehd seedlings in greenhouse and pot experiments, but also increased the branch elongation growth of young apple trees. The soil microbial community structure changed significantly after the application of 6S-2 fertilizer: the relative abundance of Trichoderma increased significantly, the relative abundance of Fusarium (especially the gene copy numbers of four Fusarium species) and Cryptococcus decreased, and the relative abundance of Bacillus and Streptomyces increased. The bacteria/fungi and soil enzyme activities increased significantly after the application of 6S-2 fertilizer. The relative contents of alkenes, ethyl ethers, and citrullines increased in root exudates of M. hupehensis Rehd treated with 6S-2 fertilizer and were positively correlated with the abundance of Trichoderma. The relative contents of aldehydes, nitriles, and naphthalenes decreased, and they were positively correlated with the relative abundance of Fusarium. In addition, levels of ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), available phosphorus (AP), available potassium (AK), organic matter (SOM), and pH in rhizosphere soil were also significantly related to changes in the microbial community structure. In summary, the application of 6S-2 fertilizer was effective in alleviating some aspects of ARD by promoting plant growth and optimizing the soil microbial community structure.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1128C-1128
Author(s):  
Shengrui Yao ◽  
Ian A. Merwin ◽  
Janice E. Thies

Apple (Malu ×domestica) replant disease (ARD) is a soil-borne disease syndrome of complex etiology that occurs worldwide when establishing new orchards in old fruit-growing sites. Methyl bromide (MB) has been an effective soil fumigant to control ARD, but safer alternatives to MB are needed. We evaluated soil microbial communities, tree growth, and fruit yield for three pre-plant soil treatments (compost amendment, soil treatment with a broad-spectrum fumigant, and untreated controls), and five clonal rootstocks (M7, M26, CG6210, CG30, and G16), in an apple replant site at Ithaca, N.Y. Molecular fingerprinting (PCR-DGGE) techniques were used to study soil microbial community composition of root-zone soil of the different soil treatments and rootstocks. Tree caliper, shoot growth, and yield were measured annually from 2002–04. Among the five rootstocks we compared, trees on CG6210 had the most growth and yield, while trees on M26 had the least growth and yield. Soil treatments altered soil microbial communities during the year after pre-plant treatments, and each treatment was associated with distinct microbial groups in hierarchical cluster analyses. However, those differences among fungal and bacterial communities diminished during the second year after planting, and soil fungal communities equilibrated faster than bacterial communities. Pre-plant soil treatments altered bulk-soil microbial community composition, but those shifts in soil microbial communities had no obvious correlation with tree performance. Rootstock genotypes were the dominant factor in tree performance after 3 years of observations, and different rootstocks were associated with characteristic bacterial, pseudomonad, fungal, and oomycetes communities in root-zone soil.


Sign in / Sign up

Export Citation Format

Share Document