scholarly journals Modeling competence in science education

Author(s):  
Mei-Hung Chiu ◽  
Jing-Wen Lin

AbstractResearch on the understanding of the nature of models and modeling processes in science education have received a lot of attention in science education. In this article, we make five claims about the research on modeling competence in science education. The five claims are (1) the development of modeling competence in practice is essential to scientific literacy for twenty-first century citizens, (2) further research is needed to build a holistic and theoretical understanding of models and modeling knowledge (MMingK), (3) providing a modeling-based scaffolding framework for meaningful and active authentic learning is to enhance student’s engagement of scientific practice, (4) appropriate formative assessment instruments and evaluation rubrics to assess students’ modeling processes and products within the context of modeling practice should be developed, and (5) research on learning progression in modeling competence needs to be intertwined with MMingK and modeling practice. Implications for student learning and teacher professional development will be drawn from existing literature.

2019 ◽  
Author(s):  
Adib Rifqi Setiawan

It is requisite that each activity is necessary to have a clear purpose as it was designed to be a well applicable plan. Scientific literacy indicates that science has value outside scientific practice is hardly modern idea and reality, although we lose sight of this history. Unfortunately, PISA study at 1999-2015 and several preexist works has shows that common science teachings don’t optimally guide students to achieve scientific literacy. As matter of fact, the answer to how to guide student achieving scientific literacy has not been obtained yet. By proposing this work, I am consider that thematic learning as an alternative method to guide students on achieving scientific literacy. Thematic learning is an educational method of teaching in which emphasis is given on choosing a specific theme for teaching concepts. It is based on integrating various information and use it to demonstrate the topic. Pedagogy of thematic learning is based on its exploration of broad areas in one theme. I don’t deny that the concept of integrating subjects to teach in Indonesian schools, generally is not new and has not been very successful in the past. In addition, some people consider thematic learning as an opportunity while others view it as having problems. The answer, however, to how thematic learning education implementation has not been studied yet comprehensively. Therefore, thematic learning lesson plans is very important to be designed then implemented. This work constructs lesson plan to guide primary education student on achieving scientific literacy, using R&D approach four-D model: define, design, develop, and disseminate. It gained lesson plan completed by student worksheets also assessment tests as well, that validated by experts and practitioners nor reliability counted based exclusively on test.


Author(s):  
Senay Purzer ◽  
Jenny Patricia Quintana-Cifuentes

AbstractThis position paper is motivated by recent educational reform efforts that urge the integration of engineering in science education. We argue that it is plausible and beneficial to integrate engineering into formal K-12 science education. We illustrate how current literature, though often implicitly, discusses this integration from a pedagogical, epistemological, or methodological argumentative stance. From a pedagogical perspective, a historically dominant argument emphasizes how engineering helps make abstract science concepts more concrete. The epistemological argument is centered on how engineering is inherently interdisciplinary and hence its integrative role in support of scientific literacy and more broadly STEM literacy is natural. From a methodological perspective, arguments focus on the engineering design process, which is compatible with scientific inquiry and adaptable to answering different types of engineering questions. We call for the necessity of spelling out these arguments and call for common language as science and engineering educators form a research-base on the integration of science and engineering. We specifically provide and discuss specific terminology associated with four different models, each effectively used to integrate engineering into school science. We caution educators against a possible direction towards a convergence approach for a specific type of integrating engineering and science. Diversity in teaching models, more accurately represents the nature of engineering but also allows adaptations based on available school resources. Future synthesis can then examine student learning outcomes associated with different teaching models.


2021 ◽  
Vol 1796 (1) ◽  
pp. 012096
Author(s):  
Denti Nanda Effendi ◽  
Irwandani ◽  
Welly Anggraini ◽  
Agus Jatmiko ◽  
Henita Rahmayanti ◽  
...  

2021 ◽  
pp. 209653112096678
Author(s):  
Guihua Zhang ◽  
Yuanrong Li ◽  
George Zhou ◽  
Sonia Wai-Ying Ho

Purpose: The Nature of Science (NOS) is an important component of scientific literacy. Science teachers’ Views of the Nature of Science (VNOS) directly affect their teaching behaviors. Therefore, it is of great significance to explore science teachers’ VNOS and find ways of improvement. This study was designed to comparatively investigate preservice science teachers’ VNOS between China and Canada. Design/Approach/Methods: The study employed a survey design to explore how Chinese and Canadian preservice science teachers understood the seven different aspects of NOS. Findings: Data showed that preservice science teachers in China and Canada both hold a modern view about science education. The level of Chinese and Canadian participants’ understanding of NOS was above the relatively naive level. Chinese teachers had better macro-understanding toward science education but their micro-mastery was insufficient. While the Canadian participants had a better understanding of the NOS than their Chinese counterparts. Originality/Value: Based on the research results and the experience of science education and teacher education in Canada, we suggested that there is a need to reconstruct the preservice science teacher education curriculum in China and promote the transformation in the science teacher educational system.


2017 ◽  
Vol 17 (1) ◽  
pp. 51-70
Author(s):  
Laurence Marty ◽  
Patrice Venturini ◽  
Jonas Almqvist

Classroom actions rely, among other things, on teaching habits and traditions. Previous research has clarified three different teaching traditions in science education: the academic tradition builds on the idea that simply the products and methods of science are worth teaching; the applied tradition focuses on students’ ability to use scientific knowledge and skills in their everyday life; and the moral tradition opens up a relationship between science and society, focusing on students’ decision making concerning socio scientific issues. The aim of this paper is to identify and discuss similarities and differences between the science curricula in Sweden, France and Western Switzerland in terms of teaching traditions. The study considers the following dimensions in the analysis: (1) the goals of science education as presented in the initial recommendations of the curricula; (2) the organization and division of the core contents; and (3) the learning outcomes expected from the students in terms of concepts, skills and/or scientific literacy requirements. Although the three traditions are taken into account within the various initial recommendations, the place they occupy in the content to be taught is different in each case. In the Swedish curriculum, our analyses show that the three traditions are embedded in the initial recommendations and in the expected outcomes. On the other hand, in the Western-Swiss and French curricula, the three traditions are embedded in the initial recommendations but only academic tradition can be found in the expected outcomes. Therefore, the Swedish curriculum seems to be more consistent regarding teaching traditions. This may have some consequences on teaching and learning practices, which will be discussed in the article. Moreover, our analyses enable us to put forward definitions of teaching tradition.


1990 ◽  
Vol 258 (6) ◽  
pp. S3 ◽  
Author(s):  
R L Malvin

By all measures attempted, scientific literacy of the American public is sadly wanting. The vast majority of our secondary school children and adults have no knowledge of most of the basic terms or concepts of science. The reasons for this shortcoming are many but prominent among them are sadly deficient texts, teachers untrained in the subject matter they teach, and college and university scientists who divorce themselves from the problem, although probably deploring it. Our institutions are no aid. They reward scientific productivity (read: number of papers published per year and research dollars), not teaching. Some suggested cures are production of better texts, training of science teachers in the field in which they teach, and, most importantly, involvement of scientists in the process. We must be willing to spend some of our time with secondary school pupils and their teachers. All will gain from the experience.


Author(s):  
Julie Keane ◽  
Laura A. Zangori ◽  
Troy D. Sadler ◽  
Patricia J. Friedrichsen

Socio-scientific issues (SSI) are widely advocated as a productive context for promoting scientific literacy that aims to prepare responsible citizens who can use science in their daily lives. However, many teachers find it challenging to enact SSI and consider SSI and discipline-based instruction as mutually exclusive approaches to science teaching. In this chapter, the authors present their framework for SSI instruction, socio-scientific issue and model-based learning (SIMBL), that emphasizes both disciplinary knowledge and its social implications. In particular, the authors argue that the integration of scientific modeling and socio-scientific reasoning (SSR) can advance students' competencies in both areas, thus promoting students' scientific literacy. The authors use an illustrative example from their work with elementary students to demonstrate the connection between students' modeling practice and their SSR. The authors conclude the chapter by introducing the epistemic tools developed to support students' modeling practice and SSR as well as implications for classroom enactments.


Sign in / Sign up

Export Citation Format

Share Document