scholarly journals Combined load frequency and terminal voltage control of power systems using moth flame optimization algorithm

Author(s):  
Deepak Kumar Lal ◽  
Ajit Kumar Barisal

AbstractStability of nominal frequency and voltage level in an electric power system is the primary control issue of practicing engineers. Any deterioration in these two parameters will affect the performance and life expectancy of the associated machinery to the power system. Hence, controllers are installed and set for a specific working situation and deal with small variations in load demand to keep the frequency and terminal voltage magnitude within the permissible limits. As the system performance can be improved with selecting suitable controller, an attempt has been made to design fractional-order PID (FOPID) controller for combined frequency and voltage control problems. This paper presents plan and execution examination of FOPID controller for simultaneous load frequency and voltage control of power system using recently developed nature-motivated powerful optimization technique, i.e., moth flame optimization algorithm. The first part of the present work demonstrates the implementation of the proposed technique on frequency stabilization of isolated power system with AVR for excitation voltage control. The superiority and effectiveness of the proposed approach are tested by comparing the dynamic response of the system with PID controllers optimized by other intelligent techniques. Then the present work is extended to multi-unit two-area power system. The tuning ability of the algorithm is extensively and comparatively investigated.

Author(s):  
Suvabrata Mukherjee ◽  
Provas Kumar Roy

Moth-flame optimization algorithm (MFOA) based on the navigation strategy of moths in universe is a novel bio-inspired optimization technique and has been exerted for determining the maximum loading limit of power system. This process is highly effective for traversing long distances following a straight path. As a matter of fact, moths follow a deadly spiral path as artificial lights tend to confuse them. Exploration and exploitation are two vital aspects of the algorithm, used in tuning of the parameters. The algorithm is verified on MATPOWER case30 and case118 systems. Comparison of the performance of MFOA has been done with other evolutionary algorithms such as multi-agent hybrid PSO (MAHPSO), differential evolution (DA), hybridized DE, and PSO (DEPSO). The performance of MFOA in determining maximum loading limit is verified from the results. In much reduced time, MFO algorithm also gives high maximum loading point (MLP).


Author(s):  
Nikhil Pachauri

Purpose In a power system, the purpose of automatic voltage regulator (AVR) is the voltage control of synchronous generator. Power system stability and security depends on the AVR. Design/methodology/approach The present work is concentrated on the precise terminal voltage control of AVR system and simultaneously maintaining the stability of the system. Therefore, an optimal proportional–integral–derivative (PID) controller is proposed. An optimization technique inspired from Mother Nature, i.e. water cycle algorithm (WCA) is used to evaluate the optimum parameter values of PID controller leading to WCA-tuned PID (WCA-PID). The performance of WCA-PID is compared with other controller reported in the literature. Findings Simulation results show that WCA-PID regulates the terminal voltage more preciously and accurately in comparison to other controller. Further, it is more robust toward parametric uncertainty, set-point tracking and disturbance rejection in comparison to other controller reported in the literature. Originality/value The work is not published anywhere else.


This work applies whale optimization algorithm for emission constrained economic dispatch of hydrothermal units including wind power. As the wind power has a characteristic of cleanliness and is renewable, this is convincing to include this for better operation of electric power system keeping in view both economic and environmental aspects. Hydrothermal scheduling integrated with wind power establishes a multi-objective problem that becomes economic emission hydro-thermal-wind scheduling problem while taking into consideration the cost due to wind uncertainty. Whale optimization algorithm is proposed to solve this emission constrained economic dispatch problem with competing objectives. This algorithm is recently developed and gives the best solution among other nature inspired algorithms. The objectives minimum generations as well as emission cost, both are optimized together including different constraints. A daily scheduling of all the three types of systems - hydro, thermal and wind is considered to evaluate the competency of this optimization technique to get a solution for this multi-objective problem. The experiments are carried out on two systems for determining the effectiveness of the suggested method. Besides, results found using the whale optimization technique have been compared with the results obtained from other evolutionary methods. From the comparison, it is experimentally justified that the whale optimization works faster and the cost of generation as well as cost of emission are lower than the other approaches.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1581
Author(s):  
Deepak Kumar Gupta ◽  
Amitkumar V. Jha ◽  
Bhargav Appasani ◽  
Avireni Srinivasulu ◽  
Nicu Bizon ◽  
...  

The automatic load frequency control for multi-area power systems has been a challenging task for power system engineers. The complexity of this task further increases with the incorporation of multiple sources of power generation. For multi-source power system, this paper presents a new heuristic-based hybrid optimization technique to achieve the objective of automatic load frequency control. In particular, the proposed optimization technique regulates the frequency deviation and the tie-line power in multi-source power system. The proposed optimization technique uses the main features of three different optimization techniques, namely, the Firefly Algorithm (FA), the Particle Swarm Optimization (PSO), and the Gravitational Search Algorithm (GSA). The proposed algorithm was used to tune the parameters of a Proportional Integral Derivative (PID) controller to achieve the automatic load frequency control of the multi-source power system. The integral time absolute error was used as the objective function. Moreover, the controller was also tuned to ensure that the tie-line power and the frequency of the multi-source power system were within the acceptable limits. A two-area power system was designed using MATLAB-Simulink tool, consisting of three types of power sources, viz., thermal power plant, hydro power plant, and gas-turbine power plant. The overall efficacy of the proposed algorithm was tested for two different case studies. In the first case study, both the areas were subjected to a load increment of 0.01 p.u. In the second case, the two areas were subjected to different load increments of 0.03 p.u and 0.02 p.u, respectively. Furthermore, the settling time and the peak overshoot were considered to measure the effect on the frequency deviation and on the tie-line response. For the first case study, the settling times for the frequency deviation in area-1, the frequency deviation in area-2, and the tie-line power flow were 8.5 s, 5.5 s, and 3.0 s, respectively. In comparison, these values were 8.7 s, 6.1 s, and 5.5 s, using PSO; 8.7 s, 7.2 s, and 6.5 s, using FA; and 9.0 s, 8.0 s, and 11.0 s using GSA. Similarly, for case study II, these values were: 5.5 s, 5.6 s, and 5.1 s, using the proposed algorithm; 6.2 s, 6.3 s, and 5.3 s, using PSO; 7.0 s, 6.5 s, and 10.0 s, using FA; and 8.5 s, 7.5 s, and 12.0 s, using GSA. Thus, the proposed algorithm performed better than the other techniques.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


2002 ◽  
Vol 12 (06) ◽  
pp. 1333-1356 ◽  
Author(s):  
YOSHISUKE UEDA ◽  
HIROYUKI AMANO ◽  
RALPH H. ABRAHAM ◽  
H. BRUCE STEWART

As part of an ongoing project on the stability of massively complex electrical power systems, we discuss the global geometric structure of contacts among the basins of attraction of a six-dimensional dynamical system. This system represents a simple model of an electrical power system involving three machines and an infinite bus. Apart from the possible occurrence of attractors representing pathological states, the contacts between the basins have a practical importance, from the point of view of the operation of a real electrical power system. With the aid of a global map of basins, one could hope to design an intervention strategy to boot the power system back into its normal state. Our method involves taking two-dimensional sections of the six-dimensional state space, and then determining the basins directly by numerical simulation from a dense grid of initial conditions. The relations among all the basins are given for a specific numerical example, that is, choosing particular values for the parameters in our model.


Author(s):  
Ram Kumar ◽  
Afzal Sikander

Purpose This paper aims to suggest the parameter identification of load frequency controller in power system. Design/methodology/approach The suggested control approach is established using fuzzy logic to design a fractional order load frequency controller. A new suitable control law is developed using fuzzy logic, and based on this developed control law, the unknown parameters of the fractional order proportional integral derivative (FOPID) controller are derived using an optimization technique, which is being used by minimizing the integral square error. In addition, to confirm the effectiveness of the proposed control design approach, numerous simulation tests were carried out on an actual single-area power system. Findings The obtained results reveal the superiority of the suggested controller as compared to the recently developed controllers with regard to time response specifications and quantifiable indicators. Additionally, the potential of the suggested controller is also observed by improving the load disturbance rejections under plant parametric uncertainty. Originality/value To the best of the authors’ knowledge, the work is not published anywhere else.


Load frequency control (LFC) in interconnected power system of small distribution generation (DG) for reliability in distribution system. The main objective is to performance evaluation load frequency control of hybrid for interconnected two-area power systems. The simulation consist of solar farm 10 MW and gasifier plant 300 kW two-area in tie line. This impact LFC can be address as a problem on how to effectively utilize the total tie-line power flow at small DG. To performance evaluation and improve that defect of LFC, the power flow of two-areas LFC system have been carefully studied, such that, the power flow and power stability is partially LFC of small DG of hybrid for interconnected two-areas power systems. Namely, the controller and structural properties of the multi-areas LFC system are similar to the properties of hybrid for interconnected two-area LFC system. Inspired by the above properties, the controller that is propose to design some proportional-integral-derivative (PID) control laws for the two-areas LFC system successfully works out the aforementioned problem. The power system of renewable of solar farm and gasifier plant in interconnected distribution power system of area in tie – line have simulation parameter by PID controller. Simulation results showed that 3 types of the controller have deviation frequency about 0.025 Hz when tie-line load changed 1 MW and large disturbance respectively. From interconnected power system the steady state time respond is 5.2 seconds for non-controller system, 4.3 seconds for automatic voltage regulator (AVR) and 1.4 seconds for under controlled system at 0.01 per unit (p.u.) with PID controller. Therefore, the PID control has the better efficiency non-controller 28 % and AVR 15 %. The result of simulation in research to be interconnected distribution power system substation of area in tie - line control for little generate storage for grid connected at better efficiency and optimization of renewable for hybrid. It can be conclude that this study can use for applying to the distribution power system to increase efficiency and power system stability of area in tie – line.


Sign in / Sign up

Export Citation Format

Share Document