scholarly journals Therapeutic potential of policosanol in the concurrent management of dyslipidemia and non-alcoholic fatty liver disease

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Mandeep K. Arora ◽  
Sudhanshu Pandey ◽  
Ritu Tomar ◽  
Jagannath Sahoo ◽  
Dinesh Kumar ◽  
...  

Abstract Background High-fat diet (HFD) possesses a major cause of cardiovascular disease, and hepatosteatosis. Unfortunately, long-term use of statins has a theoretical possibility of worsening of hepatic histology in the patients with non-alcoholic fatty liver disease (NAFLD). The objective of the study was to explore hepatoprotective potential of policosanol as an alternative to statins in experimental NAFLD. For the same, young male Wistar rats were fed with HFD for 8 weeks to induce NAFLD. 48 adult Wistar rats were distributed into six investigational groups: normal control, HFD control, and four treatment groups, receiving policosanol (50 and 100 mg/kg/day), atorvastatin (30 mg/kg/day), and silymarin (100 mg/kg/day) for 8 weeks along with HFD. Result HFD consumption caused profound hepatotoxicity evident by hepatic oxidative stress, increased Serum glutamic oxaloacetic transaminase (SGOT), Serum glutamic pyruvic transaminase (SGPT), Alkaline phosphatase (ALP), and bilirubin content. Treatment with policosanol (100 mg/kg) markedly reduced the elevated SGOT, SGPT, and ALP levels in HFD-fed rats. Moreover, policosanol significantly reduced hepatic oxidative stress manifest by reduced malondialdehyde (MDA) and increased glutathione (GSH) level. The treatment with policosanol (100 mg/kg) was found to be more active in attenuating the HFD-induced hepatotoxicity as compared to policosanol (50 mg/kg) and atorvastatin (30 mg/kg). Moreover, we observed that the hepatoprotective potential of policosanol was comparable to the silymarin. Conclusions The results of the study clearly indicated that the policosanol could be considered an intriguing approach for the treatment of NAFLD.

2020 ◽  
Vol 11 (4) ◽  
pp. 2953-2968 ◽  
Author(s):  
Xiaobing Yang ◽  
Wenjing Mo ◽  
Chuanjin Zheng ◽  
Wenzhi Li ◽  
Jian Tang ◽  
...  

Non-alcoholic fatty liver disease is associated with gut microbiota, oxidative stress, and inflammation.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 872 ◽  
Author(s):  
Jinchunzi Yang ◽  
Marta Fernández-Galilea ◽  
Leyre Martínez-Fernández ◽  
Pedro González-Muniesa ◽  
Adriana Pérez-Chávez ◽  
...  

Aging is a complex phenomenon characterized by the progressive loss of tissue and organ function. The oxidative-stress theory of aging postulates that age-associated functional losses are due to the accumulation of ROS-induced damage. Liver function impairment and non-alcoholic fatty liver disease (NAFLD) are common among the elderly. NAFLD can progress to non-alcoholic steatohepatitis (NASH) and evolve to hepatic cirrhosis or hepatic carcinoma. Oxidative stress, lipotoxicity, and inflammation play a key role in the progression of NAFLD. A growing body of evidence supports the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFA), mainly docosahaexenoic (DHA) and eicosapentaenoic acid (EPA), on metabolic diseases based on their antioxidant and anti-inflammatory properties. Here, we performed a systematic review of clinical trials analyzing the efficacy of n-3 PUFA on both systemic oxidative stress and on NAFLD/NASH features in adults. As a matter of fact, it remains controversial whether n-3 PUFA are effective to counteract oxidative stress. On the other hand, data suggest that n-3 PUFA supplementation may be effective in the early stages of NAFLD, but not in patients with more severe NAFLD or NASH. Future perspectives and relevant aspects that should be considered when planning new randomized controlled trials are also discussed.


2018 ◽  
Vol 1 (2) ◽  
pp. 24-28
Author(s):  
Tanita Suttichaimongkol

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of death from liver cirrhosis, endstage liver disease, and hepatocellular carcinoma. It is also associated with increased cardiovasculardisease and cancer related mortality. While lifestyle modifications are the mainstay of treatment,only a proportion of patients are able to make due to difficult to achieve and maintain, and so moretreatment options are required such as pharmacotherapy. This review presents the drugs used inmanaging NAFLD and their pharmacologic targets. Therapies are currently directed towards improvingthe metabolic status of the liver, insulin resistance, cell oxidative stress, apoptosis, inflammation orfibrosis. Several agents are now in large clinical trials and within the next few years, the availability oftherapeutic options for NAFLD will be approved.     Keywords: nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, fibrosis, cirrhosis  


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 687
Author(s):  
Daniela Gabbia ◽  
Luana Cannella ◽  
Sara De De Martin

A peculiar role for oxidative stress in non-alcoholic fatty liver disease (NAFLD) and its transition to the inflammatory complication non-alcoholic steatohepatitis (NASH), as well as in its threatening evolution to hepatocellular carcinoma (HCC), is supported by numerous experimental and clinical studies. NADPH oxidases (NOXs) are enzymes producing reactive oxygen species (ROS), whose abundance in liver cells is closely related to inflammation and immune responses. Here, we reviewed recent findings regarding this topic, focusing on the role of NOXs in the different stages of fatty liver disease and describing the current knowledge about their mechanisms of action. We conclude that, although there is a consensus that NOX-produced ROS are toxic in non-neoplastic conditions due to their role in the inflammatory vicious cycle sustaining the transition of NAFLD to NASH, their effect is controversial in the neoplastic transition towards HCC. In this regard, there are indications of a differential effect of NOX isoforms, since NOX1 and NOX2 play a detrimental role, whereas increased NOX4 expression appears to be correlated with better HCC prognosis in some studies. Further studies are needed to fully unravel the mechanisms of action of NOXs and their relationships with the signaling pathways modulating steatosis and liver cancer development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mihiri Goonetilleke ◽  
Nathan Kuk ◽  
Jeanne Correia ◽  
Alex Hodge ◽  
Gregory Moore ◽  
...  

Abstract Background Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. Methods Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. Results hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNβ in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. Conclusions Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation.


Sign in / Sign up

Export Citation Format

Share Document