scholarly journals Lymph node trafficking of regulatory T cells is prerequisite for immune suppression

2015 ◽  
Vol 99 (4) ◽  
pp. 561-568 ◽  
Author(s):  
Miao-Tzu Huang ◽  
Been-Ren Lin ◽  
Wei-Liang Liu ◽  
Chun-Wei Lu ◽  
Bor-Luen Chiang
PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39092 ◽  
Author(s):  
Hugh I. McFarland ◽  
Montserrat Puig ◽  
Lucja T. Grajkowska ◽  
Kazuhide Tsuji ◽  
Jay P. Lee ◽  
...  

2017 ◽  
Vol 47 (12) ◽  
pp. 2142-2152 ◽  
Author(s):  
Maria Pasztoi ◽  
Joern Pezoldt ◽  
Michael Beckstette ◽  
Christoph Lipps ◽  
Dagmar Wirth ◽  
...  

Breast Cancer ◽  
2020 ◽  
Vol 27 (5) ◽  
pp. 837-849
Author(s):  
Luis Alberto Solis-Castillo ◽  
Gina Stella Garcia-Romo ◽  
Alvaro Diaz-Rodriguez ◽  
Diana Reyes-Hernandez ◽  
Elizabeth Tellez-Rivera ◽  
...  

Cell Reports ◽  
2020 ◽  
Vol 30 (12) ◽  
pp. 4110-4123.e4 ◽  
Author(s):  
Reza Nadafi ◽  
Catarina Gago de Graça ◽  
Eelco D. Keuning ◽  
Jasper J. Koning ◽  
Sander de Kivit ◽  
...  

2019 ◽  
Vol 12 (566) ◽  
pp. eaaw7886
Author(s):  
John F. Foley

Loss of mitochondrial complex III in regulatory T cells reduces their suppressive activity without affecting their survival.


2016 ◽  
Vol 70 (5) ◽  
pp. 443-447 ◽  
Author(s):  
Bruno Märkl ◽  
Beate Paul ◽  
Tina Schaller ◽  
Hallie Kretsinger ◽  
Bernadette Kriening ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3681-3681 ◽  
Author(s):  
Shannon P. Hilchey ◽  
Richard B. Bankert ◽  
Lisa M. Rimsza ◽  
Steven H. Bernstein

Abstract Regulatory T-cells (Tregs) play a critical role in the inhibition of self-reactive immune responses and as such have been implicated in the suppression of tumor reactive effector T-cells. We demonstrate that follicular lymphoma (FL) T-cells are hypo-responsive to CD3/CD28 costimulation, as assessed by proliferation of CFSE (5-(and-6)-carboxyfluorescein diacetate succinimidyl ester) labeled cells, with only 3.11% ± 2.38 and 2.26% ± 1.76 of the CD8+ and CD4+ T-cells proliferating upon stimulation, respectively (n=7). In contrast, both normal lymph node (NLN), and reactive lymph node (RLN, lymphoid hyperplasia) T-cells proliferate significantly in response to costimulation. Specifically, NLN CD8+ and CD4+ T-cells demonstrate 35.2% ± 31.1 and 18.1% ± 15.9 cells proliferating upon stimulation, respectively (n=7). Similarly, upon stimulation, RLN CD8+ and CD4+ T-cells demonstrate 40.6% ± 22.6 and 40.3% ± 30.3 cells proliferating, respectively (n=5). We identify a population of FL infiltrating CD4+CD25+GITR+ T-cells that are significantly overrepresented within FL, 9.86% ± 6.70 (n=11) of the CD4+ T-cells, as compared to that seen in NLN, 0.70% ± 0.29 (n=13), or RLN, 1.40% ± 1.04 (n=5). These cells actively suppress the proliferation of autologous nodal CD8+ and CD4+ T-cells after costimulation, as CD25+ magnetic bead depletion of these cells in vitro restores proliferation of the remaining CD25− T-cells. Specifically, proliferation of FL CD8+CD25− and CD4+CD25− T-cells increases to 24.05% ± 11.46 and 10.53% ± 6.47, respectively, upon costimulation (n=4). The CD25+ enriched cell fraction contains functionally suppressive cells since add back of unlabelled CD25+ enriched cells to CFSE labeled CD25− cells results in a decrease in proliferation of the costimulated CD8+CD25− and CD4+CD25− T-cells, namely 7.59% ± 3.86 and 4.16% ± 1.79, respectively (n=4). These cells also suppress cytokine production (IFN-g, TNF-a and IL-2) from autologous nodal T-cells as assessed by multiplex analysis of culture supernatants. In addition to suppressing autologous nodal T-cells, the FL CD25+ enriched cells are also capable of suppressing proliferation of allogeneic CD8+CD25− and CD4+CD25− T-cells from NLN as well as normal donor peripheral blood lymphocytes (PBL), regardless of very robust stimulation of the target cells with plate bound anti-CD3 and anti-CD28 antibodies. The allogeneic suppression is not reciprocal, since CD25+ enriched cells derived from either NLN or normal donor PBL, used at the same ratio, are not capable of suppressing allogeneic CD8+CD25− and CD4+CD25− T-cells derived from FL and in fact, are less suppressive against autologous T-cells than are the FL derived CD4+CD25+ cells. Whether this is due to a higher proportion of functionally suppressive T cells within the FL derived CD25+ enriched cells, compared to that of NLN or normal donor PBL, or to an increased suppressive capacity of the FL derived CD25+ T cells is currently being investigated. These data show that FL infiltrating CD4+CD25+GITR+ T-cells have a phenotype and function consistent with Tregs and are very potent suppressors of lymphoma associated-CD8+ and CD4+ T-cells, and therefore may play an important role in lymphoma development, progression and response to treatment.


Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 2266-2276 ◽  
Author(s):  
Tomohiro Fukaya ◽  
Hideaki Takagi ◽  
Yumiko Sato ◽  
Kaori Sato ◽  
Kawori Eizumi ◽  
...  

Abstract Oral tolerance is a key feature of intestinal immunity, generating systemic tolerance to fed antigens. However, the molecular mechanism mediating oral tolerance remains unclear. In this study, we examined the role of the B7 family members of costimulatory molecules in the establishment of oral tolerance. Deficiencies of B7-H1 and B7-DC abrogated the oral tolerance, accompanied by enhanced antigen-specific CD4+ T-cell response and IgG1 production. Mesenteric lymph node (MLN) dendritic cells (DCs) displayed higher levels of B7-H1 and B7-DC than systemic DCs, whereas they showed similar levels of CD80, CD86, and B7-H2. MLN DCs enhanced the antigen-specific generation of CD4+Foxp3+ inducible regulatory T cells (iTregs) from CD4+Foxp3− T cells rather than CD4+ effector T cells (Teff) relative to systemic DCs, owing to the dominant expression of B7-H1 and B7-DC. Furthermore, the antigen-specific conversion of CD4+Foxp3− T cells into CD4+Foxp3+ iTregs occurred in MLNs greater than in peripheral organs during oral tolerance under steady-state conditions, and such conversion required B7-H1 and B7-DC more than other B7 family members, whereas it was severely impaired under inflammatory conditions. In conclusion, our findings suggest that B7-H1 and B7-DC expressed on MLN DCs are essential for establishing oral tolerance through the de novo generation of antigen-specific CD4+Foxp3+ iTregs.


Sign in / Sign up

Export Citation Format

Share Document