scholarly journals Microseisms in geothermal exploration—studies in Grass Valley, Nevada

Geophysics ◽  
1979 ◽  
Vol 44 (6) ◽  
pp. 1097-1115 ◽  
Author(s):  
Alfred L. Liaw ◽  
T. V. McEvilly

Frequency(f)‐wavenumber(k) spectra of seismic noise in the bands 1 ⩽ f ⩽ 10 Hz in frequency and |k| ⩽ 35.7 cycles/km in wavenumber, measured at several places in Grass Valley, Nevada, exhibit numerous features which can be correlated with variations in surface geology and sources associated with hot spring activity. Exploration techniques for geothermal reservoirs, based upon the spatial distribution of the amplitude and frequency characteristics of short‐period seismic noise, are applied and evaluated in a field program at this potential geothermal area. A detailed investigation of the spatial and temporal characteristics of the noise field was made to guide subsequent data acquisition and processing. Contour maps of normalized noise level derived from judiciously sampled data are dominated by the hot spring noise source and the generally high noise levels outlining the regions of thick alluvium. Major faults are evident when they produce a shallow lateral contrast in rock properties. Conventional seismic noise mapping techniques cannot differentiate noise anomalies due to buried seismic sources from those due to shallow geologic effects. The noise radiating from a deep reservoir ought to be evident as body waves of high‐phase velocity with time‐invariant source azimuth. A small two‐dimensional (2-D) array was placed at 16 locations in the region to map propagation parameters. The f‐k spectra reveal shallow local sources, but no evidence for a significant body wave component in the noise field was found. With proper data sampling, array processing provides a powerful method for mapping the horizontal component of the vector wavenumber of the noise field. This information, along with the accurate velocity structure, will allow ray tracing to locate a source region of radiating microseisms. In Grass Valley, and probably in most areas of sedimentary cover, the 2–10 Hz microseismic field is predominantly fundamental‐mode Rayleigh waves controlled by the very shallow structure.

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. KS13-KS31 ◽  
Author(s):  
Alexander Goertz ◽  
Barbara Schechinger ◽  
Benjamin Witten ◽  
Matthias Koerbe ◽  
Paul Krajewski

We analyzed ambient seismic noise from a broadband passive seismic survey acquired in an urban area in Germany. Despite a high level of anthropogenic noise, we observe lateral variations in the quasi-stationary spectra that are of natural origin and indicative of the subsurface in the survey area. The best diagnostic is the ellipticity spectrum which is the spectral ratio of the vertical over the horizontal components. Deviations of the observed spectra from a pure Rayleigh-wave ellipticity allow an approximate separation of surface-wave from body-wave components in the analyzed frequency range, distinguishing shallow (upper tens of meters) from deeper (upper three kilometers) subsurface effects. We observe an increase of vertically polarized body waves between 1 and 4 Hz that is correlated to a subsurface structure that contains an oil reservoir at about 2-km depth. We located the source of the observed body wave microtremor in depth by applying an elastic wavefield back projection and imaging technique. The method includes normalization by the impulse response of the velocity model, effects of the receiver geometry, and lateral variation of incoherent noise. The source region of the low-frequency body wave microtremor is centered above the location of the oil reservoir. Two possible explanations for the deep microtremor are elastic body-wave scattering due to the impedance contrast of the structural trap, and viscoelastic scattering due to poroelastic effects in the partially saturated reservoir.


Geophysics ◽  
1969 ◽  
Vol 34 (1) ◽  
pp. 21-38 ◽  
Author(s):  
R. T. Lacoss ◽  
E. J. Kelly ◽  
M. N. Toksöz

A theoretical study of the use of arrays for the analysis of seismic noise fields has been completed. The frequency‐wavenumber power spectral density [Formula: see text] is defined and techniques for estimating it are given. The estimates require that the auto‐ and crosspower spectral densities be estimated for all elements in the array. Subject to certain asymptotic properties of these auto‐ and crosspower spectral density estimates, expressions for both the mean and variance of the estimates of [Formula: see text] have been obtained. It has been demonstrated that if [Formula: see text] is estimated by the Frequency Domain Beamforming Method, then the estimate has the same stability as the estimates of auto‐ and crosspower spectral density. [Formula: see text] has been estimated from both long‐ and short‐period noise recorded by the Large Aperture Seismic Array in Montana. At frequencies higher than 0.3 Hz, a compressional body‐wave component which correlates with atmospheric disturbances over distant oceans has been detected. In the frequency range of 0.2 and 0.3 Hz both body waves and higher mode Rayleigh waves are observed. At frequencies below 0.15 Hz the organized vertical component of microseisms consists primarily of fundamental mode Rayleigh waves. Appreciable amounts of fundamental mode Love wave energy may also be present on horizontal instruments at these low frequencies.


1971 ◽  
Vol 61 (3) ◽  
pp. 649-670 ◽  
Author(s):  
Ronald W. Ward ◽  
M. Nafi Toksöz

abstract Data from the short and long-period seismographs at the NORSAR in Norway are used to investigate the discrimination of earthquakes and underground nuclear explosions using surface-wave versus body-wave magnitude (Ms versus mb). Earthquakes and explosions occurring within the western United States and recorded in Norway exhibit either anomalously large surface waves or anomalously low compressional body waves compared to events from central Asia. These data, as well as the results of other investigators, indicate an anomaly of 0.8 to 1.0 in Ms or 0.6 to 0.8 in mb or some linear combination of the two. The mechanism producing anomalously large Ms values from a region for explosions and the cause of lower mb values are investigated in terms of stress relaxation triggered by an explosion and regional variations in attenuation in the upper mantle beneath both the source region and the receiver region. The method of short-period amplitude spectral ratio is applied to the records of the waves from five deep events to determine the difference in attenuation beneath different receivers. The relative Q model inferred from these data for the upper mantle from 50 to 750 km depth is QLASA = 75, QTFSO = 175, and QNORSAR = 390. The circum-Pacific island arc exhibits an apparent source attenuation asymmetry. The data from the mid-Atlantic ridge indicate that strong attenuation may be associated with parts of the ridge. The relative difference of the Q model between LASA and NORSAR results in a difference in mb of 0.40 for distances of 60° to 80°, which agrees well with the observed differences in mb. We conclude that regional variations of attenuation in the upper mantle play an important role in regional differences in Ms versus mb relationship.


1967 ◽  
Vol 57 (1) ◽  
pp. 55-81
Author(s):  
E. J. Douze

abstract This report consists of a summary of the studies conducted on the subject of short-period (6.0-0.3 sec period) noise over a period of approximately three years. Information from deep-hole and surface arrays was used in an attempt to determine the types of waves of which the noise is composed. The theoretical behavior of higher-mode Rayleigh waves and of body waves as measured by surface and deep-hole arrays is described. Both surface and body waves are shown to exist in the noise. Surface waves generally predominate at the longer periods (of the period range discussed) while body waves appear at the shorter periods at quiet sites. Not all the data could be interpreted to define the wave types present.


2021 ◽  
Author(s):  
◽  
Yannik Behr

<p>We use ambient seismic noise to image the crust and uppermost mantle, and to determine the spatiotemporal characteristics of the noise field itself, and examine the way in which those characteristics may influence imaging results. Surface wave information extracted from ambient seismic noise using cross-correlation methods significantly enhances our knowledge of the crustal and uppermost mantle shear-velocity structure of New Zealand. We assemble a large dataset of three-component broadband continuous seismic data from temporary and permanent seismic stations, increasing the achievable resolution of surface wave velocity maps in comparison to a previous study. Three-component data enables us to examine both Rayleigh and Love waves using noise cross-correlation functions. Employing a Monte Carlo inversion method, we invert Rayleigh and Love wave phase and group velocity dispersion curves separately for spatially averaged isotropic shear velocity models beneath the Northland Peninsula. The results yield first-order radial anisotropy estimates of 2% in the upper crust and up to 15% in the lower crust, and estimates of Moho depth and uppermost mantle velocity compatible with previous studies. We also construct a high-resolution, pseudo-3D image of the shear-velocity distribution in the crust and uppermost mantle beneath the central North Island using Rayleigh and Love waves. We document, for the first time, the lateral extent of low shear-velocity zones in the upper and mid-crust beneath the highly active Taupo Volcanic Zone, which have been reported previously based on spatially confined 1D shear-velocity profiles. Attributing these low shear-velocities to the presence of partial melt, we use an empirical relation to estimate an average percentage of partial melt of < 4:2% in the upper and middle crust. Analysis of the ambient seismic noise field in the North Island using plane wave beamforming and slant stacking indicates that higher mode Rayleigh waves can be detected, in addition to the fundamental mode. The azimuthal distributions of seismic noise sources inferred from beamforming are compatible with high near-coastal ocean wave heights in the period band of the secondary microseism (~7 s). Averaged over 130 days, the distribution of seismic noise sources is azimuthally homogeneous, indicating that the seismic noise field is well-suited to noise cross-correlation studies. This is underpinned by the good agreement of our results with those from previous studies. The effective homogeneity of the seismic noise field and the large dataset of noise cross-correlation functions we here compiled, provide the cornerstone for future studies of ambient seismic noise and crustal shear velocity structure in New Zealand.</p>


Geophysics ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. D17-D33 ◽  
Author(s):  
Bing Zhou ◽  
Stewart Greenhalgh ◽  
Alan Green

Crosshole seismic tomography often is applied to image the velocity structure of an interwell medium. If the rocks are anisotropic, the tomographic technique must be adapted to the complex situation; otherwise, it leads to a false interpretation. We propose a nonlinear kinematic inversion method for crosshole seismic tomography in composite transversely isotropic media with known dipping symmetry axes. This method is based on a new version of the first-order traveltime perturbation equation. It directly uses the derivative of the phase velocity rather than the eigenvectors of the body-wave modes to overcome the singularity problem for application to the two quasi-shear waves. We applied an iterative nonlinear solver incorporating our kinematic ray-tracing scheme and directly compute the Jacobian matrix in an arbitrary reference medium. This reconstructs the five elastic moduli or Thomsen parameters from the first-arrival traveltimes of the three seismic body waves (qP, qSV, qSH) in strongly and weakly anisotropic media. We conducted three synthetic experiments that involve determining anisotropic parameters for a homogeneous rock, reconstructing a fault embedded in a strongly anisotropic background, and imaging a complicated four-layer model containing a small channel and a buried dipping interface. We compared results of our nonlinear inversion method with isotropic tomography and the traditional linear anisotropic inversion scheme, which showed the capability and superiority of the new scheme for crosshole tomographic imaging.


1976 ◽  
Vol 66 (5) ◽  
pp. 1485-1499 ◽  
Author(s):  
L. J. Burdick ◽  
George R. Mellman

abstract The generalized linear inverse technique has been adapted to the problem of determining an earthquake source model from body-wave data. The technique has been successfully applied to the Borrego Mountain earthquake of April 9, 1968. Synthetic seismograms computed from the resulting model match in close detail the first 25 sec of long-period seismograms from a wide range of azimuths. The main shock source-time function has been determined by a new simultaneous short period-long period deconvolution technique as well as by the inversion technique. The duration and shape of this time function indicate that most of the body-wave energy was radiated from a surface with effective radius of only 8 km. This is much smaller than the total surface rupture length or the length of the aftershock zone. Along with the moment determination of Mo = 11.2 ×1025 dyne-cm, this radius implies a high stress drop of about 96 bars. Evidence in the amplitude data indicates that the polarization angle of shear waves is very sensitive to lateral structure.


1972 ◽  
Vol 62 (1) ◽  
pp. 13-29 ◽  
Author(s):  
H. M. Iyer ◽  
John H. Healy

Abstract The approximate hexagonal configuration of LASA subarrays enables their use as omnidirectional arrays. This property is used to study the phase velocity of short-period seismic noise at different frequencies. It is found that the noise in the low-frequency band consists mainly of surface waves traveling with average velocities in the range 3.0 to 3.5 km/sec. The high-frequency noise, in the band 0.45 to 1.0 Hz, has an average velocity of about 6.0 km/sec. It is quite likely that the high-frequency noise has the nature of locally-generated body waves. Statistical analysis of Pg velocities observed during a crustal refraction experiment at LASA lends support to this hypothesis.


1978 ◽  
Vol 68 (6) ◽  
pp. 1663-1677
Author(s):  
Stephen H. Hartzell ◽  
James N. Brune ◽  
Jorge Prince

abstract The Acapulco earthquake of October 6, 1974 (mb = 5.0, Ms = 4.75) resulted in 0.5 g accelerations in Acapulco at an epicentral distance of about 35 km. Extrapolation of the peak acceleration to the source region gives a near source acceleration of at least 1.0 g. If the teleseismically estimated source depth of 51 km is assumed, the Acapulco accelerogram must be interpreted as composed of primarily body waves. This assumption yields a moment estimate of 3.3 ×1023 dyne-cm and a stress drop of 1.5 kbar. However, strong evidence indicates that the source depth is only about 1.0 km and that the record is composed mainly of high frequency (1.0 to 4.0 Hz) surface waves. The character of the record is that of a normally dispersed surface wave. The relatively simple form and high acceleration may be attributed to the high rigidity, crystalline rock types in the region. The three component record is fitted by summing the fundamental and first higher mode Rayleigh and Love waves using a model consisting of a single layer over a homogeneous half-space. The results are also checked using a direct wave-number integration program developed by Apsel and Luco. The moment estimate from the surface-wave synthetics is 2.0 ×1023 dyne-cm.


2011 ◽  
Vol 188 (2) ◽  
pp. 549-558 ◽  
Author(s):  
P. Poli ◽  
H. A. Pedersen ◽  
M. Campillo ◽  

Sign in / Sign up

Export Citation Format

Share Document