Statistically perturbed geophone array responses

Geophysics ◽  
1989 ◽  
Vol 54 (10) ◽  
pp. 1306-1317 ◽  
Author(s):  
David F. Aldridge

Seismic‐receiver arrays implemented under typical field conditions are subject to a variety of perturbing influences. The array responses that are actually achieved differ, perhaps substantially, from the nominal response associated with ideal conditions (precise positioning, vertical plants, identical geophones, perfect ground coupling, etc.). Variations in receiver array response may degrade the effectiveness of multichannel processing and analysis schemes that rely upon channel‐to‐channel waveform constancy. In effect, array‐response variation is a form of noise added to recorded waveforms and is thus potentially harmful. A rigorous physical treatment of the response of a geophone array to incident plane‐wave elastic radiation forms the point of departure for assessing the importance of response perturbations. The hard‐wired multiple seismometer group, long transmission line, and recording‐system input impedance are considered an electromechanical system. An individual geophone may have arbitrarily specified position and axial orientation and is modeled as a ground‐motion transducer that incorporates, to first order, the effect of compliant coupling to the earth. Elastic waves (of either vibratory mode) can be incident from any direction. This generality built into the mathematical description of receiver‐array response allows numerous array types (including those designed to record shear waves) to be analyzed. All parameters that determine the response value are then subjected to controlled random perturbations in order to evaluate the statistical variability of the complex valued array‐response function. Transformation of the perturbed responses to the time domain indicates the extent of waveform variability induced by geophone‐array diversity. Computational studies indicate that, for vertical or near‐vertical plane P‐wave incidence, reasonable variations in the controlling parameters do not reduce waveform coherence by any major amount. Peak times of reflection signal recorded on well planted geophone arrays typically vary by up to 4 ms. As the angle of incidence increases or the quality of the field‐array implementation degrades, the wavelets exhibit increasing amplitude loss, wave‐shape alteration, and incoherence that may affect an interpretation.

Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 755-765 ◽  
Author(s):  
Xinhua Sun ◽  
Xiaoming Tang ◽  
C. H. (Arthur) Cheng ◽  
L. Neil Frazer

In this paper, a modification of an existing method for estimating relative P-wave attenuation is proposed. By generating synthetic waveforms without attenuation, the variation of geometrical spreading related to changes in formation properties with depth can be accounted for. With the modified method, reliable P- and S-wave attenuation logs can be extracted from monopole array acoustic waveform log data. Synthetic tests show that the P- and S-wave attenuation values estimated from synthetic waveforms agree well with their respective model values. In‐situ P- and S-wave attenuation profiles provide valuable information about reservoir rock properties. Field data processing results show that this method gives robust estimates of intrinsic attenuation. The attenuation profiles calculated independently from each waveform of an eight‐receiver array are consistent with one another. In fast formations where S-wave velocity exceeds the borehole fluid velocity, both P-wave attenuation ([Formula: see text]) and S-wave attenuation ([Formula: see text]) profiles can be obtained. P- and S-wave attenuation profiles and their comparisons are presented for three reservoirs. Their correlations with formation lithology, permeability, and fractures are also presented.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1294-1304 ◽  
Author(s):  
P. N. J. Rasolofosaon

When processing and inverting seismic reflection data, the NMO velocity must be correctly described, taking into account realistic situations such as the presence of anisotropy and dipping reflectors. Some dip‐moveout (DMO) algorithms have been developed, such as Tsvankin’s analytic formula. It describes the anisotropy‐induced distortions in the classical isotropic cosine of dip dependence of the NMO velocity. However, it is restricted to the vertical symmetry planes of anisotropic media, so the technique is unsuitable for the azimuthal inspection of sedimentary rocks, either with horizontal bedding and vertical fractures or with dipping bedding but no fractures. However, under the weak anisotropy approximation the deviations of the rays from a vertical plane can be neglected for the traveltimes computation, and the equation can still be applicable. Based on this approach, an explicit analytic expression for the P-wave NMO velocity in the presence of horizontal or dipping reflectors in media exhibiting the most general symmetry type (triclinic) is obtained in this work. If the medium exhibits a horizontal symmetry plane, the concise DMO equations are formally identical to Tsvankin’s except that the parameters δ and ε are not constant but depend on the azimuth ψ Physically, δ(ψ) is the deviation from the vertical P-wave velocity of the P-wave NMO velocity for a horizontal reflector normalized by the vertical P-wave velocity for the azimuth ψ. The function ε(ψ) has the same definition as δ(ψ) except that the P-wave NMO velocity is replaced by the horizontal P-wave velocity. Both depend linearly on (1) new dimensionless anisotropy parameters and (2) generalizing to arbitrary symmetry the transversely isotropic parameters δ and ε. In the most general symmetry case (triclinic), an additional term to the DMO formula is necessary. The numerical examples, based on experimental data in rocks, show two things. First, the magnitude of the DMO errors induced by anisotropy depends primarily on the absolute value of ε(ψ) − δ(ψ) and not on the individual values of ε(ψ) and δ(ψ), which is a direct consequence of the similarity between Tsvankin’s equation and the equation presented here. Second, the anisotropy‐induced DMO correction can be significant even in the presence of moderate anisotropy and can exhibit complex azimuthal dependence.


Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. SA19-SA34 ◽  
Author(s):  
Shohei Minato ◽  
Toshifumi Matsuoka ◽  
Takeshi Tsuji ◽  
Deyan Draganov ◽  
Jürg Hunziker ◽  
...  

Crosswell reflection method is a high-resolution seismic imaging method that uses recordings between boreholes. The need for downhole sources is a restrictive factor in its application, for example, to time-lapse surveys. An alternative is to use surface sources in combination with seismic interferometry. Seismic interferometry (SI) could retrieve the reflection response at one of the boreholes as if from a source inside the other borehole. We investigate the applicability of SI for the retrieval of the reflection response between two boreholes using numerically modeled field data. We compare two SI approaches — crosscorrelation (CC) and multidimensional deconvolution (MDD). SI by MDD is less sensitive to underillumination from the source distribution, but requires inversion of the recordings at one of the receiver arrays from all the available sources. We find that the inversion problem is ill-posed, and propose to stabilize it using singular-value decomposition. The results show that the reflections from deep boundaries are retrieved very well using both the CC and MDD methods. Furthermore, the MDD results exhibit more realistic amplitudes than those from the CC method for downgoing reflections from shallow boundaries. We find that the results retrieved from the application of both methods to field data agree well with crosswell seismic-reflection data using borehole sources and with the logged P-wave velocity.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6312
Author(s):  
Fabio Corti ◽  
Abdelazeem Hassan Shehata ◽  
Antonino Laudani ◽  
Ermanno Cardelli

In this paper, a conventional 12-pulse transformer unit (CTU) and an autotransformer 12-pulse transformer unit (ATU) are compared in the view of the RTCA DO-160 standard for aircraft applications. The design of the magnetic components is proposed via a coupled FEM-circuital analysis in the time domain for an 800 Hz/2 kW system. Input AC distortion, power factor, and output DC ripple are evaluated through simulations. An accurate power loss analysis is carried out, taking into account copper losses, magnetic losses, and power losses due to power switches. The reduction in the size and weight of the ATU with respect to the CTU solution is discussed, including the need for filtering systems and the standard requirements.


1993 ◽  
Vol 83 (3) ◽  
pp. 756-779
Author(s):  
M. G. Bostock ◽  
J. C. VanDecar ◽  
R. K. Snieder

Abstract Teleseismic waves propagating in the upper mantle are subject to considerable distortion due to the effects of laterally heterogeneous structure. The magnitude and scale of velocity contrasts representative of features such as subducted slabs may be such that wave diffraction becomes an important process. In this case forward modeling methods based on high-frequency asymptotic approximations to the wave equation will not accurately describe the wavefield. A method is introduced to model the propagation of teleseismic P waves in a laterally heterogeneous upper mantle that accounts for distortion of the initial portion of the wavefield including the effects of multipathing and frequency-dependent diffraction. The method is based on a parabolic approximation to the wave equation that is solved in the time domain on a finite-difference grid which mimics the expected pattern of energy flow in a reference velocity field. Numerical examples for a simple two-dimensional subducting slab model demonstrate the application of the method and illustrate the effects of multipathing and diffraction which dominate waveform distortion at high and low frequencies, respectively.


1966 ◽  
Vol 56 (1) ◽  
pp. 201-221
Author(s):  
Shuzo Asano

abstract The effect of a corrugated interface on wave propagation is considered by using the method that was first applied to acoustical gratings by Rayleigh. The problem is what happens when a plane P wave is incident on a corrugated interface that separates two semi-infinite media. As is well known, there are irregular (scattered) waves as well as regular waves. By assuming both the amplitude and the slope of a corrugated interface to be small, quantities of the order of the square of corrugation amplitude are taken into account. In the case of normal incidence for three models considered, the effect of corrugation on reflection is larger than the effect of corrugation on refraction; the amplitude of the regularly reflected waves decreases, and that of the regularly refracted waves and of the irregular waves increases, as the corrugation amplitude becomes larger. Generally, the larger the velocity contrast, the larger the variation of wave amplitude with the wavelength and the amplitude of corrugation. The S wave component generally becomes larger as the wavelength of corrugation becomes smaller. Boundary waves exist, depending upon the ratio of wavelength of corrugation to that of the incident wave. For a specified interface, it is possible that there is a significant difference in wave amplitude as a function of the elastic constants. In the case of oblique incidence, computation was carried out for angles of incidence smaller than 15° for one model. For these small angles of incidence, almost all results for the case of normal incidence still hold. Furthermore, it can be concluded that the effect of the angle of incidence on reflected S waves is larger than for the other waves and that large differences in the amplitudes of waves at different angles of incidence may be expected for the irregular waves.


Sign in / Sign up

Export Citation Format

Share Document