Multiple weights in diffraction stack migration

Geophysics ◽  
1993 ◽  
Vol 58 (12) ◽  
pp. 1820-1830 ◽  
Author(s):  
M. Tygel ◽  
J. Schleicher ◽  
P. Hubral ◽  
C. Hanitzsch

Three‐dimensional (3-D) prestack diffraction‐stack migration methods (often called Kirchhoff migration/inversion) play a fundamental role in seismic imaging. In addition to estimating the location of arbitrarily curved reflectors and the angle‐dependent reflection coefficients upon them, they can also be used to provide useful kinematic and dynamic information about the specular reflection ray that connects the source and receiver via the unknown reflecting interface. This is achieved by performing a diffraction stack more than once upon the same seismic data set using identical stacking surfaces but different weights. Some of these weights can be applied simultaneously, i.e., as a weight‐vector. The approach offers the possibility of determining various useful quantities that help to compute and interpret migrated reflections. The vector‐weighted diffraction stack is principally intended to economize the amplitude‐preserving migration that normally would require a large amount of dynamic ray tracing. A simple 2-D synthetic example shows how the method works in principle.

2020 ◽  
Vol 8 (2) ◽  
pp. T217-T229
Author(s):  
Yang Mu ◽  
John Castagna ◽  
Gabriel Gil

Sparse-layer reflectivity inversion decomposes a seismic trace into a limited number of simple layer responses and their corresponding reflection coefficients for top and base reflections. In contrast to sparse-spike inversion, the applied sparsity constraint is less biased against layer thickness and can thus better resolve thin subtuning layers. Application to a 3D seismic data set in Southern Alberta produces inverted impedances that have better temporal resolution and lateral stability and a less blocky appearance than sparse-spike inversion. Bandwidth extension harmonically extrapolated the frequency spectra of the inverted layers and nearly doubled the usable bandwidth. Although the prospective glauconitic sand tunes at approximately 37 m, bandwidth extension reduced the tuning thickness to 22 m. Bandwidth-extended data indicate a higher correlation with synthetic traces than the original seismic data and reveal features below the original tuning thickness. After bandwidth extension, the channel top and base are more evident on inline and crossline profiles. Lateral facies changes interpreted from the inverted acoustic impedance of the bandwidth-extended data are consistent with observations in wells.


Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1181-1184 ◽  
Author(s):  
Rosine Riera ◽  
Julien Bourget ◽  
Victorien Paumard ◽  
Moyra E.J. Wilson ◽  
Jeffrey Shragge ◽  
...  

Abstract Recognition of seismic unconformities is crucial for interpreting basin history from seismic reflection data sets in both siliciclastic and carbonate settings. While it is well established that non-erosional changes in sedimentary facies can create seismic reflections that mimic seismic unconformities (i.e., pseudo-unconformities), these features are generally considered to be localized and uncommon, and, therefore, are largely overlooked during interpretation. Diagenetic alteration of strata can also affect the morphology of seismic reflectors and mislead seismic interpreters. This study is based on a three-dimensional (3-D) seismic data set and documents a 400 km2 honeycomb structure (HS) masquerading as a regional erosional unconformity in the Oligocene–Miocene carbonate strata of Australia’s North West Shelf. This HS is located at the transition between the topsets and the foresets of clinoforms of carbonate to marly composition. The HS expression in 3-D seismic data cross sections is irregular, giving the HS the appearance of a truncated surface that could erroneously be interpreted as a regional seismic unconformity. Closer examination reveals that the HS crosscuts chronostratigraphic clinoform reflectors, and frequency extraction processing shows that the HS dominantly falls within a lower-frequency band than the clinoform reflectors. The morphology of the HS (i.e., continuous with densely packed cells) and its time-transgressive nature suggest that it has a burial diagenetic origin. This suggests that creation of pseudo-unconformities at basin scale by burial diagenesis may lead to surface misidentification, with negative consequences for paleoenvironmental studies and petroleum exploration activities.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Richard T. Houck

Lithologic interpretations of amplitude variation with offset (AVO) information are ambiguous both because different lithologies occupy overlapping ranges of elastic properties, and because angle‐dependent reflection coefficients estimated from seismic data are uncertain. This paper presents a method for quantifying and combining these two components of uncertainty to get a full characterization of the uncertainty associated with an AVO‐based lithologic interpretation. The result of this approach is a compilation of all the lithologies that are consistent with the observed AVO behavior, along with a probability of occurrence for each lithology. A 2‐D line from the North Sea illustrates how the method might be applied in practice. For any data set, the interaction between the geologic and measurement components of uncertainty may significantly affect the overall uncertainty in a lithologic interpretation.


1992 ◽  
Vol 32 (1) ◽  
pp. 276
Author(s):  
T.J. Allen ◽  
P. Whiting

Several recent advances made in 3-D seismic data processing are discussed in this paper.Development of a time-variant FK dip-moveout algorithm allows application of the correct three-dimensional operator. Coupled with a high-dip one-pass 3-D migration algorithm, this provides improved resolution and response at all azimuths. The use of dilation operators extends the capability of the process to include an economical and accurate (within well-defined limits) 3-D depth migration.Accuracy of the migration velocity model may be improved by the use of migration velocity analysis: of the two approaches considered, the data-subsetting technique gives more reliable and interpretable results.Conflicts in recording azimuth and bin dimensions of overlapping 3-D surveys may be resolved by the use of a 3-D interpolation algorithm applied post 3-D stack and which allows the combined surveys to be 3-D migrated as one data set.


Geophysics ◽  
1994 ◽  
Vol 59 (5) ◽  
pp. 810-817 ◽  
Author(s):  
Samuel H. Gray ◽  
William P. May

The use of ray shooting followed by interpolation of traveltimes onto a regular grid is a popular and robust method for computing diffraction curves for Kirchhoff migration. An alternative to this method is to compute the traveltimes by directly solving the eikonal equation on a regular grid, without computing raypaths. Solving the eikonal equation on such a grid simplifies the problem of interpolating times onto the migration grid, but this method is not well defined at points where two different branches of the traveltime field meet. Also, computational and data storage issues that are relatively unimportant for performance in two dimensions limit the applicability of both schemes in three dimensions. A new implementation of a gridded eikonal equation solver has been designed to address these problems. A 2-D version of this algorithm is tested by using it to generate traveltimes to migrate the Marmousi synthetic data set using the exact velocity model. The results are compared with three other images: an F-X migration (a standard for comparison), a Kirchhoff migration using ray tracing, and a Kirchhoff migration using traveltimes generated by a commonly used eikonal equation solver. The F-X‐migrated image shows the imaging objective more clearly than any of the Kirchhoff migrations, and we advance a heuristic reason to explain this fact. Of the Kirchhoff migrations, the one using ray tracing produces the best image, and the other two are of comparable quality.


Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 1240-1250 ◽  
Author(s):  
N. Ross Hill

Kirchhoff migration is the most popular method of three‐dimensional prestack depth migration because of its flexibility and efficiency. Its effectiveness can become limited, however, when complex velocity structure causes multipathing of seismic energy. An alternative is Gaussian beam migration, which is an extension of Kirchhoff migration that overcomes many of the problems caused by multipathing. Unlike first‐arrival and most‐energetic‐arrival methods, which retain only one traveltime, this alternative method retains most arrivals by the superposition of Gaussian beams. This paper presents a prestack Gaussian beam migration method that operates on common‐offset gathers. The method is efficient because the computation of beam superposition isolates summations that do not depend on the seismic data and evaluates these integrals by considering their saddle points. Gaussian beam migration of the two‐dimensional Marmousi test data set demonstrates the method’s effectiveness for structural imaging in a case where there is multipathing of seismic energy.


Geophysics ◽  
1993 ◽  
Vol 58 (11) ◽  
pp. 1634-1645 ◽  
Author(s):  
Børge Arntsen ◽  
Bjørn Ursin

The classical one‐dimensional (1-D) inverse problem consists of estimating reflection coefficients from surface seismic data using the 1-D wave equation. Several authors have found stable solutions to this problem using least‐squares model‐fitting methods. We show that the application of these plane‐wave solutions to seismic data generated with a point source can lead to errors in estimating reflection coefficients. This difficulty is avoided by using a least‐squares model fitting scheme describing vertically traveling waves originating from a point source. It is shown that this method is roughly equivalent to deterministic deconvolution with built‐in multiple removal and compensation for spherical spreading. A true zero‐offset field data set from a specially designed seismic experiment is then used as input to estimate reflection coefficients. Stacking velocities from a conventional seismic survey were used to estimate spherical spreading. The resulting reflection coefficients are shown to correlate well with an available well log.


Author(s):  
J. K. Samarabandu ◽  
R. Acharya ◽  
D. R. Pareddy ◽  
P. C. Cheng

In the study of cell organization in a maize meristem, direct viewing of confocal optical sections in 3D (by means of 3D projection of the volumetric data set, Figure 1) becomes very difficult and confusing because of the large number of nucleus involved. Numerical description of the cellular organization (e.g. position, size and orientation of each structure) and computer graphic presentation are some of the solutions to effectively study the structure of such a complex system. An attempt at data-reduction by means of manually contouring cell nucleus in 3D was reported (Summers et al., 1990). Apart from being labour intensive, this 3D digitization technique suffers from the inaccuracies of manual 3D tracing related to the depth perception of the operator. However, it does demonstrate that reducing stack of confocal images to a 3D graphic representation helps to visualize and analyze complex tissues (Figure 2). This procedure also significantly reduce computational burden in an interactive operation.


Author(s):  
J. Liu ◽  
J. M. Cowley

The low energy loss region of a EELS spectrum carries information about the valence electron excitation processes (e.g., collective excitations for free electron like materials and interband transitions for insulators). The relative intensities and the positions of the interband transition energy loss peaks observed in EELS spectra are determined by the joint density of states (DOS) of the initial and final states of the excitation processes. Thus it is expected that EELS in reflection mode could yield information about the perturbation of the DOS of the conduction and valence bands of the bulk crystals caused by the termination of the three dimensional periodicity at the crystal surfaces. The experiments were performed in a Philipps 400T transmission electron microscope operated at 120 kV. The reflection EELS spectra were obtained by a Gatan 607 EELS spectrometer together with a Tracor data acquisition system and the resolution of the spectrometer was about 0.8 eV. All the reflection spectra are obtained from the specular reflection spots satisfying surface resonance conditions.


Author(s):  
Weiping Liu ◽  
John W. Sedat ◽  
David A. Agard

Any real world object is three-dimensional. The principle of tomography, which reconstructs the 3-D structure of an object from its 2-D projections of different view angles has found application in many disciplines. Electron Microscopic (EM) tomography on non-ordered structures (e.g., subcellular structures in biology and non-crystalline structures in material science) has been exercised sporadically in the last twenty years or so. As vital as is the 3-D structural information and with no existing alternative 3-D imaging technique to compete in its high resolution range, the technique to date remains the kingdom of a brave few. Its tedious tasks have been preventing it from being a routine tool. One keyword in promoting its popularity is automation: The data collection has been automated in our lab, which can routinely yield a data set of over 100 projections in the matter of a few hours. Now the image processing part is also automated. Such automations finish the job easier, faster and better.


Sign in / Sign up

Export Citation Format

Share Document