Traveltime and amplitude estimation using wavefront construction

Geophysics ◽  
1993 ◽  
Vol 58 (8) ◽  
pp. 1157-1166 ◽  
Author(s):  
Vetle Vinje ◽  
Einar Iversen ◽  
Håvar Gjøystdal

We have developed and implemented a new method for estimating traveltimes and amplitudes in a general smooth two‐dimensional (2-D) model. The basic idea of this wavefront (WF) construction approach is to use ray tracing to estimate a new WF from the old one. The WF is defined as a curve (in 2-D) of constant traveltime from the source. The ray direction and amplitude will then be a function of s, the distance along the front. To maintain a sufficiently small sampling distance along the WF, it is scanned at every time step and new rays are interpolated whenever the distance between two rays becomes larger than a predefined limit. As the wavefronts are constructed, the data (i.e. traveltimes, amplitude coefficients, etc.) are transferred to the receivers by interpolation within the ray cells. Advantages of the WF construction method are its flexibility, robustness, and accuracy. First, second, and later arrivals may be found at any point in the model. Any shape of the initial wavefront is possible. The drawbacks of the method are the same as for conventional ray tracing: large velocity contrasts, caustics and near‐critical incidence angle of rays onto interfaces will give less accurate solutions.

2020 ◽  
Vol 12 (8) ◽  
pp. 1319
Author(s):  
Xiaofan Sun ◽  
Bingnan Wang ◽  
Maosheng Xiang ◽  
Liangjiang Zhou ◽  
Shuai Jiang

The Gaussian vertical backscatter (GVB) model has a pivotal role in describing the forest vertical structure more accurately, which is reflected by P-band polarimetric interferometric synthetic aperture radar (Pol-InSAR) with strong penetrability. The model uses a three-dimensional parameter space (forest height, Gaussian mean representing the strongest backscattered power elevation, and the corresponding standard deviation) to interpret the forest vertical structure. This paper establishes a two-dimensional GVB model by simplifying the three-dimensional one. Specifically, the two-dimensional GVB model includes the following three cases: the Gaussian mean is located at the bottom of the canopy, the Gaussian mean is located at the top of the canopy, as well as a constant volume profile. In the first two cases, only the forest height and the Gaussian standard deviation are variable. The above approximation operation generates a two-dimensional volume only coherence solution space on the complex plane. Based on the established two-dimensional GVB model, the three-baseline inversion is achieved without the null ground-to-volume ratio assumption. The proposed method improves the performance by 18.62% compared to the three-baseline Random Volume over Ground (RVoG) model inversion. In particular, in the area where the radar incidence angle is less than 0.6 rad, the proposed method improves the inversion accuracy by 34.71%. It suggests that the two-dimensional GVB model reduces the GVB model complexity while maintaining a strong description ability.


2018 ◽  
Vol 64 (247) ◽  
pp. 745-758 ◽  
Author(s):  
E. DE ANDRÉS ◽  
J. OTERO ◽  
F. NAVARRO ◽  
A. PROMIŃSKA ◽  
J. LAPAZARAN ◽  
...  

ABSTRACTWe have developed a two-dimensional coupled glacier–fjord model, which runs automatically using Elmer/Ice and MITgcm software packages, to investigate the magnitude of submarine melting along a vertical glacier front and its potential influence on glacier calving and front position changes. We apply this model to simulate the Hansbreen glacier–Hansbukta proglacial–fjord system, Southwestern Svalbard, during the summer of 2010. The limited size of this system allows us to resolve some of the small-scale processes occurring at the ice–ocean interface in the fjord model, using a 0.5 s time step and a 1 m grid resolution near the glacier front. We use a rich set of field data spanning the period April–August 2010 to constrain, calibrate and validate the model. We adjust circulation patterns in the fjord by tuning subglacial discharge inputs that best match observed temperature while maintaining a compromise with observed salinity, suggesting a convectively driven circulation in Hansbukta. The results of our model simulations suggest that both submarine melting and crevasse hydrofracturing exert important controls on seasonal frontal ablation, with submarine melting alone not being sufficient for reproducing the observed patterns of seasonal retreat. Both submarine melt and calving rates accumulated along the entire simulation period are of the same order of magnitude, ~100 m. The model results also indicate that changes in submarine melting lag meltwater production by 4–5 weeks, which suggests that it may take up to a month for meltwater to traverse the englacial and subglacial drainage network.


2006 ◽  
Vol 128 (9) ◽  
pp. 945-952 ◽  
Author(s):  
Sandip Mazumder

Two different algorithms to accelerate ray tracing in surface-to-surface radiation Monte Carlo calculations are investigated. The first algorithm is the well-known binary spatial partitioning (BSP) algorithm, which recursively bisects the computational domain into a set of hierarchically linked boxes that are then made use of to narrow down the number of ray-surface intersection calculations. The second algorithm is the volume-by-volume advancement (VVA) algorithm. This algorithm is new and employs the volumetric mesh to advance the ray through the computational domain until a legitimate intersection point is found. The algorithms are tested for two classical problems, namely an open box, and a box in a box, in both two-dimensional (2D) and three-dimensional (3D) geometries with various mesh sizes. Both algorithms are found to result in orders of magnitude gains in computational efficiency over direct calculations that do not employ any acceleration strategy. For three-dimensional geometries, the VVA algorithm is found to be clearly superior to BSP, particularly for cases with obstructions within the computational domain. For two-dimensional geometries, the VVA algorithm is found to be superior to the BSP algorithm only when obstructions are present and are densely packed.


Author(s):  
Ganesh Hegde ◽  
Madhu Gattumane

Improvement in accuracy without sacrificing stability and convergence of the solution to unsteady diffusion heat transfer problems by computational method of enhanced explicit scheme (EES), has been achieved and demonstrated, through transient one dimensional and two dimensional heat conduction. The truncation error induced in the explicit scheme using finite difference technique is eliminated by optimization of partial derivatives in the Taylor series expansion, by application of interface theory developed by the authors. This theory, in its simple terms gives the optimum values to the decision vectors in a redundant linear equation. The time derivatives and the spatial partial derivatives in the transient heat conduction, take the values depending on the time step chosen and grid size assumed. The time correction factor and the space correction factor defined by step sizes govern the accuracy, stability and convergence of EES. The comparison of the results of EES with analytical results, show decreased error as compared to the result of explicit scheme. The paper has an objective of reducing error in the explicit scheme by elimination of truncation error introduced by neglecting the higher order terms in the expansion of the governing function. As the pilot examples of the exercise, the implementation is aimed at solving one-dimensional and two-dimensional problems of transient heat conduction and compared with the results cited in the referred literature.


1986 ◽  
Vol 32 (112) ◽  
pp. 391-396 ◽  
Author(s):  
Richard B. Alley

AbstractThe average three-dimensional coordination number, n3, is an important measure of firn structure. The value of n3 can be estimated from n2, the average measured two-dimensional coordination number, and from a function, Γ, that depends only on the ratio of average bond radius to grain radius in the sample. This method is easy to apply and does not require the use of unknown shape factors or tunable parameters.


The current article dispenses the numerical investigation of a two dimensional unsteady laminar flow of incompressible fluid passing a regular pentagonal obstacle in an open rectangular channel. The centre of attention of this work is the comparison of drag coefficients estimated for two distinct cases based on the orientation of face and corner of an obstacle against the flow direction. The numerical results shows that the corner – oriented obstacle bring about 42% larger value of drag coefficient at Re = 500 than face – oriented obstacle. The substantial growth in the expanse of vortex behind obstacle (presented as a function of fluid inertia 25 < Re < 500) is analyzed through the contours and streamline patterns of velocity field. The two eddies in the downstream become entirely unsymmetrical at Re = 500 for both the cases, whereas; the flow separation phenomena occurs a bit earlier in the face – oriented case at Re = 250. Two dimensional Pressure – Based – Segregated solver is employed to model the governing equations written in velocity and pressure fields. The numerical simulations of unsteady flow are presented for 50 seconds time frame with time step 0.01 by using one of the best available commercial based Computational Fluid Dynamics (CFD) software, ANSYS 15.0.


Sign in / Sign up

Export Citation Format

Share Document