Migration of P‐wave reflection data in transversely isotropic media

Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 591-596 ◽  
Author(s):  
Suhas Phadke ◽  
S. Kapotas ◽  
N. Dai ◽  
Ernest R. Kanasewich

Wave propagation in transversely isotropic media is governed by the horizontal and vertical wave velocities. The quasi‐P(qP) wavefront is not an ellipse; therefore, the propagation cannot be described by the wave equation appropriate for elliptically anisotropic media. However, for a limited range of angles from the vertical, the dispersion relation for qP‐waves can be approximated by an ellipse. The horizontal velocity necessary for this approximation is different from the true horizontal velocity and depends upon the physical properties of the media. In the method described here, seismic data is migrated using a 45-degree wave equation for elliptically anisotropic media with the horizontal velocity determined by comparing the 45-degree elliptical dispersion relation and the quasi‐P‐dispersion relation. The method is demonstrated for some synthetic data sets.

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. C75-C83 ◽  
Author(s):  
Zedong Wu ◽  
Tariq Alkhalifah

The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute most of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and they depend on fewer medium parameters. However, conventional solutions of the acoustic-wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we separate the quasi-P-wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the nonelliptic anisotropic components, which form a pseudodifferential operator. We then develop a separable approximation of the dispersion relation of nonelliptic-anisotropic components, specifically for transversely isotropic media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the nonelliptical terms represented in the Fourier domain. A frequency-domain Helmholtz formulation of the approach renders the iterative implementation efficient because the cost is dominated by the lower-upper decomposition of the impedance matrix for the simpler elliptical anisotropic model. In addition, the resulting wavefield is free of S-wave artifacts and has a balanced amplitude. Numerical examples indicate that the method is reasonably accurate and efficient.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C337-C354 ◽  
Author(s):  
Jörg Schleicher ◽  
Jessé C. Costa

The wave equation can be tailored to describe wave propagation in vertical-symmetry axis transversely isotropic (VTI) media. The qP- and qS-wave eikonal equations derived from the VTI wave equation indicate that in the pseudoacoustic approximation, their dispersion relations degenerate into a single one. Therefore, when using this dispersion relation for wave simulation, for instance, by means of finite-difference approximations, both events are generated. To avoid the occurrence of the pseudo-S-wave, the qP-wave dispersion relation alone needs to be approximated. This can be done with or without the pseudoacoustic approximation. A Padé expansion of the exact qP-wave dispersion relation leads to a very good approximation. Our implementation of a separable version of this equation in the mixed space-wavenumber domain permits it to be compared with a low-rank solution of the exact qP-wave dispersion relation. Our numerical experiments showed that this approximation can provide highly accurate wavefields, even in strongly anisotropic inhomogeneous media.


Geophysics ◽  
2021 ◽  
pp. 1-49
Author(s):  
Mohammad Mahdi Abedi ◽  
David Pardo

Large-offset seismic data processing, imaging, and velocity estimation require an accurate traveltime approximation over a wide range of offsets. In layered transversely isotropic media with vertical symmetry axis (VTI), the accuracy of traditional traveltime approximations is limited to near offsets. Herein, we propose a new traveltime approximation that maintains the accuracy of the classical equations around zero offset, and exhibits the correct curvilinear asymptote at infinitely large offsets. Our approximation is based on the conventional acoustic assumption. Its equation incorporates six parameters. To define them, we use the Taylor series expansion of the exact traveltime around zero offset, and a new asymptotic series for infinite offset. Our asymptotic equation shows that the traveltime behavior at infinitely large offsets is dominated by the properties of the layer with the maximum horizontal velocity in the sequence. The parameters of our approximation depend on: the effective zero offset traveltime, the normal moveout velocity, the anellipticity, a new large-offset heterogeneity parameter, and the properties of the layer with the maximum horizontal velocity in the sequence. We apply our traveltime approximation: (1) to directly calculate traveltime and ray parameter at given offsets, as analytical forward modeling; and (2) to estimate the first four of the aforementioned parameters for the layers beneath a known high-velocity layer. Our large-offset heterogeneity parameter includes the layering effect on the reflections traveltime.


Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 467-483 ◽  
Author(s):  
Ilya Tsvankin

Progress in seismic inversion and processing in anisotropic media depends on our ability to relate different seismic signatures to the anisotropic parameters. While the conventional notation (stiffness coefficients) is suitable for forward modeling, it is inconvenient in developing analytic insight into the influence of anisotropy on wave propagation. Here, a consistent description of P‐wave signatures in transversely isotropic (TI) media with arbitrary strength of the anisotropy is given in terms of Thomsen notation. The influence of transverse isotropy on P‐wave propagation is shown to be practically independent of the vertical S‐wave velocity [Formula: see text], even in models with strong velocity variations. Therefore, the contribution of transverse isotropy to P‐wave kinematic and dynamic signatures is controlled by just two anisotropic parameters, ε and δ, with the vertical velocity [Formula: see text] being a scaling coefficient in homogeneous models. The distortions of reflection moveouts and amplitudes are not necessarily correlated with the magnitude of velocity anisotropy. The influence of transverse isotropy on P‐wave normal‐moveout (NMO) velocity in a horizontally layered medium, on small‐angle reflection coefficient, and on point‐force radiation in the symmetry direction is entirely determined by the parameter δ. Another group of signatures of interest in reflection seisimology—the dip‐dependence of NMO velocity, magnitude of nonhyperbolic moveout, time‐migration impulse response, and the radiation pattern near vertical—is dependent on both anisotropic parameters (ε and δ) and is primarily governed by the difference between ε and δ. Since P‐wave signatures are so sensitive to the value of ε − δ, application of the elliptical‐anisotropy approximation (ε = δ) in P‐wave processing may lead to significant errors. Many analytic expressions given in the paper remain valid in transversely isotropic media with a tilted symmetry axis. Moreover, the equation for NMO velocity from dipping reflectors, as well as the nonhyperbolic moveout equation, can be used in symmetry planes of any anisotropic media (e.g., orthorhombic).


Author(s):  
Yabing Zhang ◽  
Yang Liu ◽  
Shigang Xu

Abstract Under the conditions of acoustic approximation and isotropic attenuation, we derive the pseudo- and pure-viscoacoustic wave equations from the complex constitutive equation and the decoupled P-wave dispersion relation, respectively. Based on the equations, we investigate the viscoacoustic wave propagation in vertical transversely isotropic media. The favourable advantage of these formulas is that the phase dispersion and the amplitude dissipation terms are inherently separated. As a result, we can conveniently perform the decoupled viscoacoustic wavefield simulations by choosing different coefficients. In the computational process, a generalised pseudo-spectral method and a low-rank decomposition scheme are adopted to calculate the wavenumber-domain and mixed-domain propagators, respectively. Because low-rank decomposition plays an important role in the simulated procedure, we evaluate the approximation accuracy for different operators using a linear velocity model. To demonstrate the effectiveness and the accuracy of our method, several numerical examples are carried out based on the new pseudo- and pure-viscoacoustic wave equations. Both equations can effectively describe the viscoacoustic wave propagation characteristics in vertical transversely isotropic media. Unlike the pseudo-viscoacoustic wave equation, the pure-viscoacoustic wave equation can produce stable viscoacoustic wavefields without any SV-wave artefacts.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T51-T62 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas ◽  
Tariq Alkhalifah

Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Sign in / Sign up

Export Citation Format

Share Document