Precise detection of a P‐wave in low S/N signal by using time‐frequency representations of a triaxial hodogram

Geophysics ◽  
1996 ◽  
Vol 61 (5) ◽  
pp. 1453-1466 ◽  
Author(s):  
Hirokazu Moriya ◽  
Hiroaki Niitsuma

We have developed a signal processing technique for three‐component microseismic data that allows the precise determination of P‐wave arrival times. The method is based on a time‐frequency representation of the signal that allows the evaluation of the 3-D particle motion from seismic waves in both time and frequency domains. A spectral matrix is constructed using the time‐frequency distributions. A crosscorrelation coefficient for the three‐component signal is derived through eigenvalue analysis of the spectral matrix. The P‐wave arrival time is determined through a statistical test of hypotheses using the crosscorrelation coefficient. This signal processing method is evaluated using a synthetic signal and it is compared to the local stationary autoregressive method for determining P‐wave arrival times. We also show that the proposed method is capable of determining the arrival time of a synthetic P‐wave to within 1 ms (five points in the discrete time series) in the presence of a signal‐to‐noise ratio of −5dB. The method can detect the arrival time of different frequency components of the P‐wave, which is a possibility for the evaluation of velocity dispersion of the seismic wave. We demonstrate the feasibility of the method further by applying it to microseismic data from a geothermal field.

Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. KS63-KS73
Author(s):  
Yangyang Ma ◽  
Congcong Yuan ◽  
Jie Zhang

We have applied the cross double-difference (CDD) method to simultaneously determine the microseismic event locations and five Thomsen parameters in vertically layered transversely isotropic media using data from a single vertical monitoring well. Different from the double-difference (DD) method, the CDD method uses the cross-traveltime difference between the S-wave arrival time of one event and the P-wave arrival time of another event. The CDD method can improve the accuracy of the absolute locations and maintain the accuracy of the relative locations because it contains more absolute information than the DD method. We calculate the arrival times of the qP, qSV, and SH waves with a horizontal slowness shooting algorithm. The sensitivities of the arrival times with respect to the five Thomsen parameters are derived using the slowness components. The derivations are analytical, without any weak anisotropic approximation. The input data include the cross-differential traveltimes and absolute arrival times, providing better constraints on the anisotropic parameters and event locations. The synthetic example indicates that the method can produce better event locations and anisotropic velocity model. We apply this method to the field data set acquired from a single vertical monitoring well during a hydraulic fracturing process. We further validate the anisotropic velocity model and microseismic event locations by comparing the modeled and observed waveforms. The observed S-wave splitting also supports the inverted anisotropic results.


Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC117-WC126 ◽  
Author(s):  
Davide Gei ◽  
Leo Eisner ◽  
Peter Suhadolc

Microseismic data recorded by surface monitoring arrays can be used to estimate the effective anisotropy of the overburden and reservoir. In this study we used the inversion of picked P-wave arrival times to estimate the Thomsen parameter [Formula: see text] and the anellipticity coefficient [Formula: see text]. This inversion employs an analytic equation of P-wave traveltimes as a function of offset in homogeneous, transversely isotropic media with a vertical axis of symmetry. We considered a star-like distribution of receivers and, for this geometry, we analyzed the sensitivity of the inversion method to picking noise and to uncertainties in the P-wave vertical velocity and source depth. Long offsets, as well as a high number of receivers per line, improve the estimation of [Formula: see text] and [Formula: see text] from noisy arrival times. However, if we do not use the correct value of the P-wave vertical velocity or source depth, the long-offset may increase the inaccuracy in the estimation of the anisotropic parameters. Such inaccuracy cannot be detected from time residuals. We also applied this inversion to field data acquired during the hydraulic fracturing of a gas shale reservoir and compared the results with the anisotropic parameters estimated from synthetic arrival times computed for an isotropic layered medium. The effective anisotropy from the inversion of the field data cannot be explained by layering only and is partially due to the intrinsic anisotropy of the reservoir and/or overburden. This study emphasizes the importance of using accurate values of the vertical velocity and source depth in the P-wave arrival time inversion for estimating anisotropic parameters from passive seismic data.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3725
Author(s):  
Paweł Zimroz ◽  
Paweł Trybała ◽  
Adam Wróblewski ◽  
Mateusz Góralczyk ◽  
Jarosław Szrek ◽  
...  

The possibility of the application of an unmanned aerial vehicle (UAV) in search and rescue activities in a deep underground mine has been investigated. In the presented case study, a UAV is searching for a lost or injured human who is able to call for help but is not able to move or use any communication device. A UAV capturing acoustic data while flying through underground corridors is used. The acoustic signal is very noisy since during the flight the UAV contributes high-energetic emission. The main goal of the paper is to present an automatic signal processing procedure for detection of a specific sound (supposed to contain voice activity) in presence of heavy, time-varying noise from UAV. The proposed acoustic signal processing technique is based on time-frequency representation and Euclidean distance measurement between reference spectrum (UAV noise only) and captured data. As both the UAV and “injured” person were equipped with synchronized microphones during the experiment, validation has been performed. Two experiments carried out in lab conditions, as well as one in an underground mine, provided very satisfactory results.


1997 ◽  
Vol 40 (5) ◽  
Author(s):  
G. Patanè ◽  
C. Centamore ◽  
S. La Delfa

This paper analyses twelve etnean earthquakes which occurred at various depths and recorded at least by eleven stations. The seismic stations span a wide part of the volcanic edifice; therefore each set of direct P-wave arrival times at these stations can be considered appropriate for tracing isochronal curves. Using this simple methodology and the results obtained by previous studies the authors make a reconstruction of the geometry of the bodies inside the crust beneath Mt. Etna. These bodies are interpreted as a set of cooled magmatic masses, delimited by low-velocity discontinuities which can be considered, at present, the major feeding systems of the volcano.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. KS1-KS10 ◽  
Author(s):  
Zhishuai Zhang ◽  
James W. Rector ◽  
Michael J. Nava

We have studied microseismic data acquired from a geophone array deployed in the horizontal section of a well drilled in the Marcellus Shale near Susquehanna County, Pennsylvania. Head waves were used to improve event location accuracy as a substitution for the traditional P-wave polarization method. We identified that resonances due to poor geophone-to-borehole coupling hinder arrival-time picking and contaminate the microseismic data spectrum. The traditional method had substantially greater uncertainty in our data due to the large uncertainty in P-wave polarization direction estimation. We also identified the existence of prominent head waves in some of the data. These head waves are refractions from the interface between the Marcellus Shale and the underlying Onondaga Formation. The source location accuracy of the microseismic events can be significantly improved by using the P-, S-wave direct arrival times and the head wave arrival times. Based on the improvement, we have developed a new acquisition geometry and strategy that uses head waves to improve event location accuracy and reduce acquisition cost in situations such as the one encountered in our study.


Author(s):  
Masumi Yamada ◽  
Jim Mori

Summary Detecting P-wave onsets for on-line processing is an important component for real-time seismology. As earthquake early warning systems around the world come into operation, the importance of reliable P-wave detection has increased, since the accuracy of the earthquake information depends primarily on the quality of the detection. In addition to the accuracy of arrival time determination, the robustness in the presence of noise and the speed of detection are important factors in the methods used for the earthquake early warning. In this paper, we tried to improve the P-wave detection method designed for real-time processing of continuous waveforms. We used the new Tpd method, and proposed a refinement algorithm to determine the P-wave arrival time. Applying the refinement process substantially decreases the errors of the P-wave arrival time. Using 606 strong motion records of the 2011 Tohoku earthquake sequence to test the refinement methods, the median of the error was decreased from 0.15 s to 0.04 s. Only three P-wave arrivals were missed by the best threshold. Our results show that the Tpd method provides better accuracy for estimating the P-wave arrival time compared to the STA/LTA method. The Tpd method also shows better performance in detecting the P-wave arrivals of the target earthquakes in the presence of noise and coda of previous earthquakes. The Tpd method can be computed quickly so it would be suitable for the implementation in earthquake early warning systems.


1974 ◽  
Vol 64 (5) ◽  
pp. 1501-1507 ◽  
Author(s):  
D. J. Sutton

Abstract A fall in P-wave velocity before the Gisborne earthquake of March 4, 1966 is indicated by arrival-time residuals of P waves from distant earthquakes recorded at the Gisborne seismograph station. Residuals were averaged over 6-month intervals from 1964 to 1968 and showed an increase of about 0.5 sec, implying later arrival times. The change began about 480 days before the earthquake. This precursory time interval is about that expected for an earthquake of this magnitude (ML = 6.2), but unlike most other reported instances, there was no obvious delay between the return of the velocity to normal and the occurrence of the earthquake. Similar analyses were carried out over the same period for two other New Zealand seismograph stations; at Karapiro there was no significant variation in mean residuals, and at Wellington the scatter was too large for the results to be meaningful. The Gisborne earthquake had a focus in the lower crust, about 25 km deep and was deeper than other events for which such precursory drops in P-wave velocity have been reported.


Sign in / Sign up

Export Citation Format

Share Document