Seismic data processing in vertically inhomogeneous TI media

Geophysics ◽  
1997 ◽  
Vol 62 (2) ◽  
pp. 662-675 ◽  
Author(s):  
Tariq Alkhalifah

The first and most important step in processing data in transversely isotropic (TI) media for which velocities vary with depth is parameter estimation. The multilayer normal‐moveout (NMO) equation for a dipping reflector provides the basis for extending the TI velocity analysis of Alkhalifah and Tsvankin to vertically inhomogeneous media. This NMO equation is based on a root‐mean‐square (rms) average of interval NMO velocities that correspond to a single ray parameter, that of the dipping event. Therefore, interval NMO velocities [including the normal‐moveout velocity for horizontal events, [Formula: see text]] can be extracted from the stacking velocities using a Dix‐type differentiation procedure. On the other hand, η, which is a key combination of Thomsen's parameters that time‐related processing relies on, is extracted from the interval NMO velocities using a homogeneous inversion within each layer. Time migration, like dip moveout, depends on the same two parameters in vertically inhomogeneous media, namely [Formula: see text] and η, both of which can vary with depth. Therefore, [Formula: see text] and ε estimated using the dip dependency of P‐wave moveout velocity can be used for TI time migration. An application of anisotropic processing to seismic data from offshore Africa demonstrates the importance of considering anisotropy, especially as it pertains to focusing and imaging of dipping events.

Geophysics ◽  
1995 ◽  
Vol 60 (5) ◽  
pp. 1550-1566 ◽  
Author(s):  
Tariq Alkhalifah ◽  
Ilya Tsvankin

The main difficulty in extending seismic processing to anisotropic media is the recovery of anisotropic velocity fields from surface reflection data. We suggest carrying out velocity analysis for transversely isotropic (TI) media by inverting the dependence of P‐wave moveout velocities on the ray parameter. The inversion technique is based on the exact analytic equation for the normal‐moveout (NMO) velocity for dipping reflectors in anisotropic media. We show that P‐wave NMO velocity for dipping reflectors in homogeneous TI media with a vertical symmetry axis depends just on the zero‐dip value [Formula: see text] and a new effective parameter η that reduces to the difference between Thomsen parameters ε and δ in the limit of weak anisotropy. Our inversion procedure makes it possible to obtain η and reconstruct the NMO velocity as a function of ray parameter using moveout velocities for two different dips. Moreover, [Formula: see text] and η determine not only the NMO velocity, but also long‐spread (nonhyperbolic) P‐wave moveout for horizontal reflectors and the time‐migration impulse response. This means that inversion of dip‐moveout information allows one to perform all time‐processing steps in TI media using only surface P‐wave data. For elliptical anisotropy (ε = δ), isotropic time‐processing methods remain entirely valid. We show the performance of our velocity‐analysis method not only on synthetic, but also on field data from offshore Africa. Accurate time‐to‐depth conversion, however, requires that the vertical velocity [Formula: see text] be resolved independently. Unfortunately, it cannot be done using P‐wave surface moveout data alone, no matter how many dips are available. In some cases [Formula: see text] is known (e.g., from check shots or well logs); then the anisotropy parameters ε and δ can be found by inverting two P‐wave NMO velocities corresponding to a horizontal and a dipping reflector. If no well information is available, all three parameters ([Formula: see text], ε, and δ) can be obtained by combining our inversion results with shear‐wave information, such as the P‐SV or SV‐SV wave NMO velocities for a horizontal reflector. Generalization of the single‐layer NMO equation to layered anisotropic media with a dipping reflector provides a basis for extending anisotropic velocity analysis to vertically inhomogeneous media. We demonstrate how the influence of a stratified anisotropic overburden on moveout velocity can be stripped through a Dix‐type differentiation procedure.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1239-1246 ◽  
Author(s):  
Robert W. Vestrum ◽  
Don C. Lawton ◽  
Ron Schmid

Seismic anisotropy in dipping shales causes imaging and positioning problems for underlying structures. We developed an anisotropic depth‐migration approach for P-wave seismic data in transversely isotropic (TI) media with a tilted axis of symmetry normal to bedding. We added anisotropic and dip parameters to the depth‐imaging velocity model and used prestack depth‐migrated image gathers in a diagnostic manner to refine the anisotropic velocity model. The apparent position of structures below dipping anisotropic overburden changes considerably between isotropic and anisotropic migrations. The ray‐tracing algorithm used in a 2-D prestack Kirchhoff depth migration was modified to calculate traveltimes in the presence of TI media with a tilted symmetry axis. The resulting anisotropic depth‐migration algorithm was applied to physical‐model seismic data and field seismic data from the Canadian Rocky Mountain Thrust and Fold Belt. The anisotropic depth migrations offer significant improvements in positioning and reflector continuity over those obtained using isotropic algorithms.


Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 623-631 ◽  
Author(s):  
Tariq Alkhalifah

When transversely isotropic (VTI) media with vertical symmetry axes are characterized using the zero‐dip normal moveout (NMO) velocity [[Formula: see text]] and the anisotropy parameter ηinstead of Thomsen’s parameters, time‐related processing [moveout correction, dip moveout (DMO), and time migration] become nearly independent of the vertical P- and S-wave velocities ([Formula: see text] and [Formula: see text], respectively). The independence on [Formula: see text] and [Formula: see text] is well within the limits of seismic accuracy, even for relatively strong anisotropy. The dependency on [Formula: see text] and [Formula: see text] reduces even further as the ratio [Formula: see text] decreases. In fact, for [Formula: see text], all time‐related processing depends exactly on only [Formula: see text] and η. This fortunate dependence on two parameters is demonstrated here through analytical derivations of time‐related processing equations in terms of [Formula: see text] and η. The time‐migration dispersion relation, the NMO velocity for dipping events, and the ray‐tracing equations extracted by setting [Formula: see text] (i.e., by considering VTI as acoustic) not only depend solely on [Formula: see text] and η but are much simpler than the counterpart expressions for elastic media. Errors attributed to this use of the acoustic assumption are small and may be neglected. Therefore, as in isotropic media, the acoustic model arising from setting [Formula: see text], although not exactly true for VTI media, can serve as a useful approximation to the elastic model for the kinematics of P-wave data. This approximation can boost the efficiency of imaging and DMO programs for VTI media as well as simplify their description.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1839-1854 ◽  
Author(s):  
Tariq Alkhalifah

P‐wave reflections from horizontal interfaces in transversely isotropic (TI) media have nonhyperbolic moveout. It has been shown that such moveout as well as all time‐related processing in TI media with a vertical symmetry axis (VTI media) depends on only two parameters, [Formula: see text] and η. These two parameters can be estimated from the dip‐moveout behavior of P‐wave surface seismic data. Alternatively, one could use the nonhyperbolic moveout for parameter estimation. The quality of resulting estimates depends largely on the departure of the moveout from hyperbolic and its sensitivity to the estimated parameters. The size of the nonhyperbolic moveout in TI media is dependent primarily on the anisotropy parameter η. An “effective” version of this parameter provides a useful measure of the nonhyperbolic moveout even in v(z) isotropic media. Moreover, effective η, [Formula: see text], is used to show that the nonhyperbolic moveout associated with typical TI media (e.g., shales, with η ≃ 0.1) is larger than that associated with typical v(z) isotropic media. The departure of the moveout from hyperbolic is increased when typical anisotropy is combined with vertical heterogeneity. Larger offset‐to‐depth ratios (X/D) provide more nonhyperbolic information and, therefore, increased stability and resolution in the inversion for [Formula: see text]. The X/D values (e.g., X/D > 1.5) needed for obtaining stability and resolution are within conventional acquisition limits, especially for shallow targets. Although estimation of η using nonhyperbolic moveouts is not as stable as using the dip‐moveout method of Alkhalifah and Tsvankin, particularly in the absence of large offsets, it does offer some flexibility. It can be applied in the absence of dipping reflectors and also may be used to estimate lateral η variations. Application of the nonhyperbolic inversion to data from offshore Africa demonstrates its usefulness, especially in estimating lateral and vertical variations in η.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. C1-C12 ◽  
Author(s):  
Shibo Xu ◽  
Alexey Stovas ◽  
Tariq Alkhalifah ◽  
Hitoshi Mikada

Seismic data processing in the elastic anisotropic model is complicated due to multiparameter dependency. Approximations to the P-wave kinematics are necessary for practical purposes. The acoustic approximation for P-waves in a transversely isotropic medium with a vertical symmetry axis (VTI) simplifies the description of wave propagation in elastic media, and as a result, it is widely adopted in seismic data processing and analysis. However, finite-difference implementations of that approximation are plagued with S-wave artifacts. Specifically, the resulting wavefield also includes artificial diamond-shaped S-waves resulting in a redundant signal for many applications that require pure P-wave data. To derive a totally S-wave-free acoustic approximation, we have developed a new acoustic approximation for pure P-waves that is totally free of S-wave artifacts in the homogeneous VTI model. To keep the S-wave velocity equal to zero, we formulate the vertical S-wave velocity to be a function of the model parameters, rather than setting it to zero. Then, the corresponding P-wave phase and group velocities for the new acoustic approximation are derived. For this new acoustic approximation, the kinematics is described by a new eikonal equation for pure P-wave propagation, which defines the new vertical slowness for the P-waves. The corresponding perturbation-based approximation for our new eikonal equation is used to compare the new equation with the original acoustic eikonal. The accuracy of our new P-wave acoustic approximation is tested on numerical examples for homogeneous and multilayered VTI models. We find that the accuracy of our new acoustic approximation is as good as the original one for the phase velocity, group velocity, and the kinematic parameters such as vertical slowness, traveltime, and relative geometric spreading. Therefore, the S-wave-free acoustic approximation could be further applied in seismic processing that requires pure P-wave data.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. C175-C185 ◽  
Author(s):  
Ivan Pšenčík ◽  
Véronique Farra

We have developed approximate nonhyperbolic P-wave moveout formulas applicable to weakly or moderately anisotropic media of arbitrary anisotropy symmetry and orientation. Instead of the commonly used Taylor expansion of the square of the reflection traveltime in terms of the square of the offset, we expand the square of the reflection traveltime in terms of weak-anisotropy (WA) parameters. No acoustic approximation is used. We specify the formulas designed for anisotropy of arbitrary symmetry for the transversely isotropic (TI) media with the axis of symmetry oriented arbitrarily in the 3D space. Resulting formulas depend on three P-wave WA parameters specifying the TI symmetry and two angles specifying the orientation of the axis of symmetry. Tests of the accuracy of the more accurate of the approximate formulas indicate that maximum relative errors do not exceed 0.3% or 2.5% for weak or moderate P-wave anisotropy, respectively.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. C229-C237 ◽  
Author(s):  
Shibo Xu ◽  
Alexey Stovas

The moveout approximations are commonly used in seismic data processing such as velocity analysis, modeling, and time migration. The anisotropic effect is very obvious for a converted wave when estimating the physical and processing parameters from the real data. To approximate the traveltime in an elastic orthorhombic (ORT) medium, we defined an explicit rational-form approximation for the traveltime of the converted [Formula: see text]-, [Formula: see text]-, and [Formula: see text]-waves. To obtain the expression of the coefficients, the Taylor-series approximation is applied in the corresponding vertical slowness for three pure-wave modes. By using the effective model parameters for [Formula: see text]-, [Formula: see text]-, and [Formula: see text]-waves, the coefficients in the converted-wave traveltime approximation can be represented by the anisotropy parameters defined in the elastic ORT model. The accuracy in the converted-wave traveltime for three ORT models is illustrated in numerical examples. One can see from the results that, for converted [Formula: see text]- and [Formula: see text]-waves, our rational-form approximation is very accurate regardless of the tested ORT model. For a converted [Formula: see text]-wave, due to the existence of cusps, triplications, and shear singularities, the error is relatively larger compared with PS-waves.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1600-1610 ◽  
Author(s):  
Andres Pech ◽  
Ilya Tsvankin ◽  
Vladimir Grechka

Nonhyperbolic (long‐spread) moveout provides essential information for a number of seismic inversion/processing applications, particularly for parameter estimation in anisotropic media. Here, we present an analytic expression for the quartic moveout coefficient A4 that controls the magnitude of nonhyperbolic moveout of pure (nonconverted) modes. Our result takes into account reflection‐point dispersal on irregular interfaces and is valid for arbitrarily anisotropic, heterogeneous media. All quantities needed to compute A4 can be evaluated during the tracing of the zero‐offset ray, so long‐spread moveout can be modeled without time‐consuming multioffset, multiazimuth ray tracing. The general equation for the quartic coefficient is then used to study azimuthally varying nonhyperbolic moveout of P‐waves in a dipping transversely isotropic (TI) layer with an arbitrary tilt ν of the symmetry axis. Assuming that the symmetry axis is confined to the dip plane, we employed the weak‐anisotropy approximation to analyze the dependence of A4 on the anisotropic parameters. The linearized expression for A4 is proportional to the anellipticity coefficient η ≈ ε − δ and does not depend on the individual values of the Thomsen parameters. Typically, the magnitude of nonhyperbolic moveout in tilted TI media above a dipping reflector is highest near the reflector strike, whereas deviations from hyperbolic moveout on the dip line are substantial only for mild dips. The azimuthal variation of the quartic coefficient is governed by the tilt ν and reflector dip φ and has a much more complicated character than the NMO–velocity ellipse. For example, if the symmetry axis is vertical (VTI media, ν = 0) and the dip φ < 30°, A4 goes to zero on two lines with different azimuths where it changes sign. If the symmetry axis is orthogonal to the reflector (this model is typical for thrust‐and‐fold belts), the strike‐line quartic coefficient is defined by the well‐known expression for a horizontal VTI layer (i.e., it is independent of dip), while the dip‐line A4 is proportional to cos4 φ and rapidly decreases with dip. The high sensitivity of the quartic moveout coefficient to the parameter η and the tilt of the symmetry axis can be exploited in the inversion of wide‐azimuth, long‐spread P‐wave data for the parameters of TI media.


Geophysics ◽  
1989 ◽  
Vol 54 (10) ◽  
pp. 1339-1343 ◽  
Author(s):  
S. C. Singh ◽  
G. F. West ◽  
C. H. Chapman

The delay‐time (τ‐p) parameterization, which is also known as the plane‐wave decomposition (PWD) of seismic data, has several advantages over the more traditional time‐distance (t‐x) representation (Schultz and Claerbout, 1978). Plane‐wave seismograms in the (τ, p) domain can be used for obtaining subsurface elastic properties (P‐wave and S‐wave velocities and density as functions of depth) from inversion of the observed oblique‐incidence seismic data (e.g., Yagle and Levy, 1985; Carazzone, 1986; Carrion, 1986; Singh et al., 1989). Treitel et al. (1982) performed time migration of plane‐wave seismograms. Diebold and Stoffa (1981) used plane‐wave seismograms to derive a velocity‐depth function. Decomposing seismic data also allows more rapid modeling, since it is faster to compute synthetic seismograms in the (τ, p) than in the (t, x) domain. Unfortunately, the transformation of seismic data from the (t, x) to the (τ, p) domain may produce artifacts, such as those caused by discrete sampling, of the data in space.


2020 ◽  
Vol 8 ◽  
Author(s):  
M. Giustiniani ◽  
U. Tinivella ◽  
S. Parolai ◽  
F. Donda ◽  
G. Brancolini ◽  
...  

The integrated analysis using different seismic wave types in a record is a very efficient approach for a comprehensive characterization of marine sediments, especially in shallow water conditions. The proposed integrated method to analyze seismic data in post-critical conditions consists of: 1) the inversion of Scholte waves to obtain a reliable Vs distribution of the near seafloor; 2) pre-processing of seismic data; 3) construction of the P-wave velocity field by using all available information, including available well data; and 4) the application of the wave equation datuming and post-processing, such as pre-stack time migration. We demonstrate how this approach could be successfully applied on seismic datasets characterized by post-critical conditions and the occurrence of the Scholte waves, which may be exploited to provide fundamental information instead of being only an unwanted effect. The integrated analysis of seismic events can thus help, together with data processing, by providing better seismic imaging, which is a priority for a reliable seismostratigraphic interpretation.


Sign in / Sign up

Export Citation Format

Share Document