scholarly journals In‐situ, high‐frequency P-wave velocity measurements within 1 m of the earth’s surface

Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 323-325 ◽  
Author(s):  
Gregory S. Baker ◽  
Don W. Steeples ◽  
Chris Schmeissner

Seismic P-wave velocities in near‐surface materials can be much slower than the speed of sound waves in air (normally 335 m/s or 1100 ft/s). Difficulties often arise when measuring these low‐velocity P-waves because of interference by the air wave and the air‐coupled waves near the seismic source, at least when gathering data with the more commonly used shallow P-wave sources. Additional problems in separating the direct and refracted arrivals within ∼2 m of the source arise from source‐generated nonlinear displacement, even when small energy sources such as sledgehammers, small‐caliber rifles, and seismic blasting caps are used. Using an automotive spark plug as an energy source allowed us to measure seismic P-wave velocities accurately, in situ, from a few decimeters to a few meters from the shotpoint. We were able to observe three distinct P-wave velocities at our test site: ∼130m/s, 180m/s, and 300m/s. Even the third layer, which would normally constitute the first detected layer in a shallow‐seismic‐refraction survey, had a P-wave velocity lower than the speed of sound in air.

Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. B131-B146 ◽  
Author(s):  
Manuel Queißer ◽  
Satish C. Singh

The presence of injected [Formula: see text] in the Utsira Sand at the Sleipner site, Norway, is associated with a high negative P-wave velocity anomaly; that is, a low postinjection velocity and a strong seismic response. Time-lapse seismic imaging of [Formula: see text] injection at Sleipner is thus a viable monitoring tool of the injected [Formula: see text]. The work flow usually involves conventional seismic processing, including stacking, and results in seismic images. Multiple reflections, interference effects such as tuning, and the velocity pushdown effect due to [Formula: see text] injection render these seismic images ambiguous in terms of the localization and the quantification of the [Formula: see text] in the Utsira Sand. Nonetheless, seismic images often form the basis for analyses that aim to quantify the injected [Formula: see text]. We employed elastic 2D full waveform inversion to invert prestack seismic Sleipner data from preinjection (1994) and postinjection (1999) and compared the resulting postinjection P-wave velocity model with the corresponding seismic image. We found that the high-amplitude reflections in the seismic image do not everywhere coincide with low postinjection P-wave velocities. Drawing extensive and integrated conclusions is out of our scope, because this would require full control over the seismic data processing and a more comprehensive forward modeling. For instance, modeling should be done in 3D and an adequate anelasticity formulation should be added. However, the waveform inversion scheme we used accounts for all the aforementioned elastic propagation effects. The results therefore suggested that the exclusive use of seismic images to quantify [Formula: see text] could be revised and full waveform inversion should be added to the analysis toolbox.


1982 ◽  
Vol 19 (8) ◽  
pp. 1535-1547 ◽  
Author(s):  
C. Wright

Seismological experiments have been undertaken at a test site near Chalk River, Ontario that consists of crystalline rocks covered by glacial sediments. Near-surface P and S wave velocity and amplitude variations have been measured along profiles less than 2 km in length. The P and S wave velocities were generally in the range 4.5–5.6 and 2.9–3.2 km/s, respectively. These results are consistent with propagation through fractured gneiss and monzonite, which form the bulk of the rock body. The P wave velocity falls below 5.0 km/s in a region where there is a major fault and in an area of high electrical conductivity; such velocity minima are therefore associated with fracture systems. For some paths, the P and 5 wave velocities were in the ranges 6.2–6.6 and 3.7–4.1 km/s, respectively, showing the presence of thin sheets of gabbro. Temporal changes in P travel times of up to 1.4% over a 12 h period were observed where the sediment cover was thickest. The cause may be changes in the water table. The absence of polarized SH arrivals from specially designed shear wave sources indicates the inhomogeneity of the test site. A Q value of 243 ± 53 for P waves was derived over one relatively homogeneous profile of about 600 m length. P wave velocity minima measured between depths of 25 and 250 m in a borehole correlate well with the distribution of fractures inferred from optical examination of borehole cores, laboratory measurements of seismic velocities, and tube wave studies.


2001 ◽  
Vol 7 (3) ◽  
pp. 267-279 ◽  
Author(s):  
Kitchakarn Promma

Abstract A challenging task in environmental geophysics is to locate fractures near a leaching stope in an underground mine. Existing methods for interpreting sonic logs do not incorporate petrofabric effects. The petrofabric effects are variations of P-wave velocities caused by textural variations in the lithology. This paper describes a new concept of using the petrofabric effects in the logs to determine anomalies of natural and blast-induced fractures in hard rocks. Full-waveform acoustic logs were acquired near an underground stope at the Colorado School of Mines Experimental Mine, Idaho Springs, Colorado. Data acquisition occurred once before the stope was blasted and twice after the blast event. Laboratory studies show that the petrofabric effects range from 4 to 15 percent. This variation depends on rock types. To interpret location of fractures, variation envelopes of petrofabric effects were placed in P-wave velocity logs. P-wave velocities that are lower than lower limits of the variation envelopes indicate natural and blast-induced fractures. Results show that the blasting broke the entire rock mass within 6 ft from the stope's perimeter. The use of petrofabric effect interpretation improves effectiveness of P-wave velocity logs in identifying fractures.


2020 ◽  
Author(s):  
Jerome Fortin ◽  
Cedric Bailly ◽  
Mathilde Adelinet ◽  
Youri Hamon

<p>Linking ultrasonic measurements made on samples, with sonic logs and seismic subsurface data, is a key challenge for the understanding of carbonate reservoirs. To deal with this problem, we investigate the elastic properties of dry lacustrine carbonates. At one study site, we perform a seismic refraction survey (100 Hz), as well as sonic (54 kHz) and ultrasonic (250 kHz) measurements directly on outcrop and ultrasonic measurements on samples (500 kHz). By comparing the median of each data set, we show that the P wave velocity decreases from laboratory to seismic scale. Nevertheless, the median of the sonic measurements acquired on outcrop surfaces seems to fit with the seismic data, meaning that sonic acquisition may be representative of seismic scale. To explain the variations due to upscaling, we relate the concept of representative elementary volume with the wavelength of each scale of study. Indeed, with upscaling, the wavelength varies from millimetric to pluri-metric. This change of scale allows us to conclude that the behavior of P wave velocity is due to different geological features (matrix porosity, cracks, and fractures) related to the different wavelengths used. Based on effective medium theory, we quantify the pore aspect ratio at sample scale and the crack/fracture density at outcrop and seismic scales using a multiscale representative elementary volume concept. Results show that the matrix porosity that controls the ultrasonic P wave velocities is progressively lost with upscaling, implying that crack and fracture porosity impacts sonic and seismic P wave velocities, a result of paramount importance for seismic interpretation based on deterministic approaches.</p><p>Bailly, C., Fortin, J., Adelinet, M., & Hamon, Y. (2019). Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2019JB018391</p>


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. D205-D216 ◽  
Author(s):  
Xinding Fang ◽  
Michael C. Fehler ◽  
Arthur Cheng

Formation elastic properties near a borehole may be altered from their original state due to the stress concentration around the borehole. This can lead to an incorrect estimation of formation elastic properties measured from sonic logs. Previous work has focused on estimating the elastic properties of the formation surrounding a borehole under anisotropic stress loading. We studied the effect of borehole stress concentration on sonic logging in a moderately consolidated Berea sandstone using a two-step approach. First, we used an iterative approach, which combines a rock-physics model and a finite-element method, to calculate the stress-dependent elastic properties of the rock around a borehole subjected to an anisotropic stress loading. Second, we used the anisotropic elastic model obtained from the first step and a finite-difference method to simulate the acoustic response of the borehole. Although we neglected the effects of rock failure and stress-induced crack opening, our modeling results provided important insights into the characteristics of borehole P-wave propagation when anisotropic in situ stresses are present. Our simulation results were consistent with the published laboratory measurements, which indicate that azimuthal variation of the P-wave velocity around a borehole subjected to uniaxial loading is not a simple cosine function. However, on field scale, the azimuthal variation in P-wave velocity might not be apparent at conventional logging frequencies. We found that the low-velocity region along the wellbore acts as an acoustic focusing zone that substantially enhances the P-wave amplitude, whereas the high-velocity region caused by the stress concentration near the borehole results in a significantly reduced P-wave amplitude. This results in strong azimuthal variation of P-wave amplitude, which may be used to infer the in situ stress state.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 241-253 ◽  
Author(s):  
Helmut Dürrast ◽  
P. N. J. Rasolofosaon ◽  
Siegfried Siegesmund

Fractures are an important fabric element in many tight gas reservoirs because they provide the necessary channels for fluid flow in rocks which usually have low matrix permeabilities. Several sandstone samples of such a reservoir type were chosen for a combined study of rock fabric elements and petrophysical properties. Geological investigations of the distribution and orientation of the fractures and sedimentary layering were performed. In addition, laboratory measurements were carried out to determine the directional dependence of the permeability and P‐wave velocities. Higher permeability values are generally in the plane of the nearly horizontal sedimentary layering with regard to the core axis. With the occurrence of subvertical fractures, however, the highest permeabilities were determined to be parallel to the core axis. Compressional wave velocities were measured on spherical samples in more than 100 directions to get the VP symmetry without prior assumptions. Below 50 MPa confining pressure, all samples show a monoclinic symmetry of the P wave velocity distribution, caused by sedimentary layering, fractures, and crossbedding. At higher confining pressure, sedimentary layering is approximately the only effective fabric element, resulting in a more transverse isotropic VP symmetry. Using the geological‐petrophysical model introduced here, the complex symmetry of the VP distributions can only be explained by the rock fabric elements. Furthermore, water saturation increases the velocities and decreases the anisotropy but does not change VP symmetry. This indicates that at this state, all fabric elements, including the fractures, have an influence on P‐wave velocity distribution.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. E59-E68 ◽  
Author(s):  
Hua Wang ◽  
Guo Tao

Propagating wavefields from monopole, dipole, and quadrupole acoustic logging-while-drilling (LWD) tools in very slow formations have been studied using the discrete wavenumber integration method. These studies examine the responses of monopole and dipole systems at different source frequencies in a very slow surrounding formation, and the responses of a quadrupole system operating at a low source frequency in a slow formation with different S-wave velocities. Analyses are conducted of coherence-velocity/slowness relationships (semblance spectra) in the time domain and of the dispersion characteristics of these waveform signals from acoustic LWD array receivers. These analyses demonstrate that, if the acoustic LWD tool is centralized properly and is operating at low frequencies (below 3 kHz), a monopole system can measure P-wave velocity by means of a “leaky” P-wave for very slow formations. Also, for very slow formations a dipole system can measure the P-wave velocity via a leaky P-wave and can measure the S-wave velocity from a formation flexural wave. With a quadrupole system, however, the lower frequency limit (cutoff frequency) of the drill-collar interference wave would decrease to 5 kHz and might no longer be neglected if the surrounding formation becomes a very slow formation, with S-wave velocities at approximately 500 m/s.


Geophysics ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 405-412 ◽  
Author(s):  
Manika Prasad

Shallow water flows and over‐pressured zones are a major hazard in deepwater drilling projects. Their detection prior to drilling would save millions of dollars in lost drilling costs. I have investigated the sensitivity of seismic methods for this purpose. Using P‐wave information alone can be ambiguous, because a drop in P‐wave velocity (Vp) can be caused both by overpressure and by presence of gas. The ratio of P‐wave velocity to S‐wave velocity (Vp/Vs), which increases with overpressure and decreases with gas saturation, can help differentiate between the two cases. Since P‐wave velocity in a suspension is slightly below that of the suspending fluid and Vs=0, Vp/Vs and Poisson's ratio must increase exponentially as a load‐bearing sediment approaches a state of suspension. On the other hand, presence of gas will also decrease Vp but Vs will remain unaffected and Vp/Vs will decrease. Analyses of ultrasonic P‐ and S‐wave velocities in sands show that the Vp/Vs ratio, especially at low effective pressures, decreases rapidly with pressure. At very low pressures, Vp/Vs values can be as large as 100 and higher. Above pressures greater than 2 MPa, it plateaus and does not change much with pressure. There is significant change in signal amplitudes and frequency of shear waves below 1 MPa. The current ultrasonic data shows that Vp/Vs values can be invaluable indicators of low differential pressures.


Sign in / Sign up

Export Citation Format

Share Document