Using P-wave velocity logs with petrofabric effects to map natural and blast-induced fractures in hard rocks

2001 ◽  
Vol 7 (3) ◽  
pp. 267-279 ◽  
Author(s):  
Kitchakarn Promma

Abstract A challenging task in environmental geophysics is to locate fractures near a leaching stope in an underground mine. Existing methods for interpreting sonic logs do not incorporate petrofabric effects. The petrofabric effects are variations of P-wave velocities caused by textural variations in the lithology. This paper describes a new concept of using the petrofabric effects in the logs to determine anomalies of natural and blast-induced fractures in hard rocks. Full-waveform acoustic logs were acquired near an underground stope at the Colorado School of Mines Experimental Mine, Idaho Springs, Colorado. Data acquisition occurred once before the stope was blasted and twice after the blast event. Laboratory studies show that the petrofabric effects range from 4 to 15 percent. This variation depends on rock types. To interpret location of fractures, variation envelopes of petrofabric effects were placed in P-wave velocity logs. P-wave velocities that are lower than lower limits of the variation envelopes indicate natural and blast-induced fractures. Results show that the blasting broke the entire rock mass within 6 ft from the stope's perimeter. The use of petrofabric effect interpretation improves effectiveness of P-wave velocity logs in identifying fractures.

Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. B131-B146 ◽  
Author(s):  
Manuel Queißer ◽  
Satish C. Singh

The presence of injected [Formula: see text] in the Utsira Sand at the Sleipner site, Norway, is associated with a high negative P-wave velocity anomaly; that is, a low postinjection velocity and a strong seismic response. Time-lapse seismic imaging of [Formula: see text] injection at Sleipner is thus a viable monitoring tool of the injected [Formula: see text]. The work flow usually involves conventional seismic processing, including stacking, and results in seismic images. Multiple reflections, interference effects such as tuning, and the velocity pushdown effect due to [Formula: see text] injection render these seismic images ambiguous in terms of the localization and the quantification of the [Formula: see text] in the Utsira Sand. Nonetheless, seismic images often form the basis for analyses that aim to quantify the injected [Formula: see text]. We employed elastic 2D full waveform inversion to invert prestack seismic Sleipner data from preinjection (1994) and postinjection (1999) and compared the resulting postinjection P-wave velocity model with the corresponding seismic image. We found that the high-amplitude reflections in the seismic image do not everywhere coincide with low postinjection P-wave velocities. Drawing extensive and integrated conclusions is out of our scope, because this would require full control over the seismic data processing and a more comprehensive forward modeling. For instance, modeling should be done in 3D and an adequate anelasticity formulation should be added. However, the waveform inversion scheme we used accounts for all the aforementioned elastic propagation effects. The results therefore suggested that the exclusive use of seismic images to quantify [Formula: see text] could be revised and full waveform inversion should be added to the analysis toolbox.


Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 323-325 ◽  
Author(s):  
Gregory S. Baker ◽  
Don W. Steeples ◽  
Chris Schmeissner

Seismic P-wave velocities in near‐surface materials can be much slower than the speed of sound waves in air (normally 335 m/s or 1100 ft/s). Difficulties often arise when measuring these low‐velocity P-waves because of interference by the air wave and the air‐coupled waves near the seismic source, at least when gathering data with the more commonly used shallow P-wave sources. Additional problems in separating the direct and refracted arrivals within ∼2 m of the source arise from source‐generated nonlinear displacement, even when small energy sources such as sledgehammers, small‐caliber rifles, and seismic blasting caps are used. Using an automotive spark plug as an energy source allowed us to measure seismic P-wave velocities accurately, in situ, from a few decimeters to a few meters from the shotpoint. We were able to observe three distinct P-wave velocities at our test site: ∼130m/s, 180m/s, and 300m/s. Even the third layer, which would normally constitute the first detected layer in a shallow‐seismic‐refraction survey, had a P-wave velocity lower than the speed of sound in air.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. R99-R123 ◽  
Author(s):  
Zhiming Ren ◽  
Yang Liu

Elastic full-waveform inversion (FWI) updates model parameters by minimizing the residuals of the P- and S-wavefields, resulting in more local minima and serious nonlinearity. In addition, the coupling of different parameters degrades the inversion results. To address these problems, we have developed a hierarchical elastic FWI scheme based on wavefield separation and a multistep-length gradient approach. First, we have derived the gradients expressed by different wave modes; analyzed the crosstalk between various parameters; and evaluated the sensitivity of separated P-wave, separated S-wave, and P- and S-wave misfit functions. Then, a practical four-stage inversion workflow was developed. In the first stage, conventional FWI is used to achieve rough estimates of the P- and S-wave velocities. In the second stage, we only invert the P-wave velocity applying the separated P-wavefields when strong S-wave energy is involved, or we merely update the S-wave velocity by matching the separated S-wavefields for the weak S-wave case. The PP and PS gradient formulas are used in these two cases, respectively. Therefore, the nonlinearity of inversion and the crosstalk between parameters are greatly reduced. In the third stage, the multistep-length gradient scheme is adopted. The density structure can be improved owing to the use of individual step lengths for different parameters. In the fourth stage, we make minor adjustments to the recovered P- and S-wave velocities and density by implementing conventional FWI again. Synthetic examples have determined that our hierarchical FWI scheme with the aforementioned steps obtains more plausible models than the conventional method. Inversion results of each stage and any three stages reveal that wavefield decomposition and the multistep-length approach are helpful to improve the accuracy of velocities and density, respectively, and all the stages of our hierarchical FWI method are necessary to give a good recovery of P- and S-wave velocities and density.


2020 ◽  
Author(s):  
Jerome Fortin ◽  
Cedric Bailly ◽  
Mathilde Adelinet ◽  
Youri Hamon

<p>Linking ultrasonic measurements made on samples, with sonic logs and seismic subsurface data, is a key challenge for the understanding of carbonate reservoirs. To deal with this problem, we investigate the elastic properties of dry lacustrine carbonates. At one study site, we perform a seismic refraction survey (100 Hz), as well as sonic (54 kHz) and ultrasonic (250 kHz) measurements directly on outcrop and ultrasonic measurements on samples (500 kHz). By comparing the median of each data set, we show that the P wave velocity decreases from laboratory to seismic scale. Nevertheless, the median of the sonic measurements acquired on outcrop surfaces seems to fit with the seismic data, meaning that sonic acquisition may be representative of seismic scale. To explain the variations due to upscaling, we relate the concept of representative elementary volume with the wavelength of each scale of study. Indeed, with upscaling, the wavelength varies from millimetric to pluri-metric. This change of scale allows us to conclude that the behavior of P wave velocity is due to different geological features (matrix porosity, cracks, and fractures) related to the different wavelengths used. Based on effective medium theory, we quantify the pore aspect ratio at sample scale and the crack/fracture density at outcrop and seismic scales using a multiscale representative elementary volume concept. Results show that the matrix porosity that controls the ultrasonic P wave velocities is progressively lost with upscaling, implying that crack and fracture porosity impacts sonic and seismic P wave velocities, a result of paramount importance for seismic interpretation based on deterministic approaches.</p><p>Bailly, C., Fortin, J., Adelinet, M., & Hamon, Y. (2019). Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2019JB018391</p>


2019 ◽  
pp. 11-25
Author(s):  
Jelena Majstorović ◽  
Miloš Gligorić ◽  
Suzana Lutovac ◽  
Milanka Negovanović ◽  
Luka Crnogorac

Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


2020 ◽  
Vol 222 (2) ◽  
pp. 1164-1177
Author(s):  
Nikolaos Athanasopoulos ◽  
Edgar Manukyan ◽  
Thomas Bohlen ◽  
Hansruedi Maurer

SUMMARY Full-waveform inversion of shallow seismic wavefields is a promising method to infer multiparameter models of elastic material properties (S-wave velocity, P-wave velocity and mass density) of the shallow subsurface with high resolution. Previous studies used either the refracted Pwaves to reconstructed models of P-wave velocity or the high-amplitude Rayleigh waves to infer the S-wave velocity structure. In this work, we propose a combination of both wavefields using continuous time–frequency windowing. We start with the contribution of refracted P waves and gradually increase the time window to account for scattered body waves, higher mode Rayleigh waves and finally the fundamental Rayleigh wave mode. The opening of the time window is combined with opening the frequency bandwidth of input signals to avoid cycle skipping. Synthetic reconstruction tests revealed that the reconstruction of P-wave velocity model and mass density can be improved. The S-wave velocity reconstruction is still accurate and robust and is slightly benefitted by time–frequency windowing. In a field data application, we observed that time–frequency windowing improves the consistency of multiparameter models. The inferred models are in good agreement with independent geophysical information obtained from ground-penetrating radar and full-waveform inversion of SH waves.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


Geophysics ◽  
2002 ◽  
Vol 67 (1) ◽  
pp. 241-253 ◽  
Author(s):  
Helmut Dürrast ◽  
P. N. J. Rasolofosaon ◽  
Siegfried Siegesmund

Fractures are an important fabric element in many tight gas reservoirs because they provide the necessary channels for fluid flow in rocks which usually have low matrix permeabilities. Several sandstone samples of such a reservoir type were chosen for a combined study of rock fabric elements and petrophysical properties. Geological investigations of the distribution and orientation of the fractures and sedimentary layering were performed. In addition, laboratory measurements were carried out to determine the directional dependence of the permeability and P‐wave velocities. Higher permeability values are generally in the plane of the nearly horizontal sedimentary layering with regard to the core axis. With the occurrence of subvertical fractures, however, the highest permeabilities were determined to be parallel to the core axis. Compressional wave velocities were measured on spherical samples in more than 100 directions to get the VP symmetry without prior assumptions. Below 50 MPa confining pressure, all samples show a monoclinic symmetry of the P wave velocity distribution, caused by sedimentary layering, fractures, and crossbedding. At higher confining pressure, sedimentary layering is approximately the only effective fabric element, resulting in a more transverse isotropic VP symmetry. Using the geological‐petrophysical model introduced here, the complex symmetry of the VP distributions can only be explained by the rock fabric elements. Furthermore, water saturation increases the velocities and decreases the anisotropy but does not change VP symmetry. This indicates that at this state, all fabric elements, including the fractures, have an influence on P‐wave velocity distribution.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. E59-E68 ◽  
Author(s):  
Hua Wang ◽  
Guo Tao

Propagating wavefields from monopole, dipole, and quadrupole acoustic logging-while-drilling (LWD) tools in very slow formations have been studied using the discrete wavenumber integration method. These studies examine the responses of monopole and dipole systems at different source frequencies in a very slow surrounding formation, and the responses of a quadrupole system operating at a low source frequency in a slow formation with different S-wave velocities. Analyses are conducted of coherence-velocity/slowness relationships (semblance spectra) in the time domain and of the dispersion characteristics of these waveform signals from acoustic LWD array receivers. These analyses demonstrate that, if the acoustic LWD tool is centralized properly and is operating at low frequencies (below 3 kHz), a monopole system can measure P-wave velocity by means of a “leaky” P-wave for very slow formations. Also, for very slow formations a dipole system can measure the P-wave velocity via a leaky P-wave and can measure the S-wave velocity from a formation flexural wave. With a quadrupole system, however, the lower frequency limit (cutoff frequency) of the drill-collar interference wave would decrease to 5 kHz and might no longer be neglected if the surrounding formation becomes a very slow formation, with S-wave velocities at approximately 500 m/s.


Sign in / Sign up

Export Citation Format

Share Document