From acquisition footprints to true amplitude

Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 830-839 ◽  
Author(s):  
Stéphane Gesbert

This paper addresses the issue of the sensitivity of 3‐D prestack depth migration (PSDM) with respect to the acquisition geometry of 3‐D seismic surveys. Using the theoretical framework of PSDM, I show how acquisition‐related imaging artifacts—the acquisition footprints—can arise. I then show how the acquisition footprint can be suppressed in two steps by (1) partitioning the 3‐D survey into minimal data sets, each to be migrated separately, and (2) applying a robust variable‐geometry PSDM quadrature. The validity of the method is demonstrated on synthetic parallel and antiparallel multistreamer data and cross‐spread data. The proposed two‐step solution can play an important role in projects where amplitude integrity and fidelity are paramount, e.g., quantitative interpretation and time‐lapse surveying. The concept of minimal data also fills a gap in understanding the relation between acquisition and imaging.

Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1470-1484 ◽  
Author(s):  
Alastair M. Swanston ◽  
Peter B. Flemings ◽  
Joseph T. Comisky ◽  
Kevin D. Best

Two orthogonal preproduction seismic surveys and a regional seismic survey acquired after eight years of production from the Bullwinkle field (Green Canyon 65, Gulf of Mexico) reveal extraordinary seismic differences attributed to production‐induced changes in rock and fluid properties. Amplitude reduction (of up to 71%) occurs where production and log data show that water has replaced hydrocarbons as the oil–water contact moved upward. Separate normalizations of these surveys demonstrate that time‐lapse results are improved by using seismic surveys acquired in similar orientations; also, clearer difference images are obtained from comparing lower‐frequency data sets. Superior stratigraphic illumination in the dip‐oriented survey relative to the strike‐oriented surveys results in nongeological amplitude differences. This documents the danger of using dissimilar baseline and monitor surveys for time‐lapse studies.


Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 496-508 ◽  
Author(s):  
Turgut Özdenvar ◽  
George A. McMechan ◽  
Preston Chaney

Synthesis of complete seismic survey data sets allows analysis and optimization of all stages in an acquisition/processing sequence. The characteristics of available survey designs, parameter choices, and processing algorithms may be evaluated prior to field acquisition to produce a composite system in which all stages have compatible performance; this maximizes the cost effectiveness for a given level of accuracy, or for targets with specific characteristics. Data sets synthesized for three salt structures provide representative comparisons of time and depth migration, post‐stack and prestack processing, and illustrate effects of varying recording aperture and shot spacing, iterative focusing analysis, and the interaction of migration algorithms with recording aperture. A final example demonstrates successful simulation of both 2-D acquisition and processing of a real data line over a salt pod in the Gulf of Mexico.


Author(s):  
R.L.C. Van Spaendonck ◽  
M.W.P. Dillen ◽  
A.J.W. Duijndam ◽  
J.T. Fokkeman

Geophysics ◽  
2005 ◽  
Vol 70 (1) ◽  
pp. S30-S37 ◽  
Author(s):  
Xiao-Bi Xie ◽  
Ru-Shan Wu

A 3D multicomponent prestack depth-migration method is presented. An elastic-screen propagator based on one-way wave propagation with a wide-angle correction is used to extrapolate both source and receiver wavefields. The elastic-screen propagator neglects backscattered waves but can handle forward multiple-scattering effects, such as focusing/defocusing, diffraction, interference, and conversions between P- and S-waves. Vector-imaging conditions are used to generate a P-P image and a P-S converted-wave image. The application of the multicomponent elastic propagator and vector-imaging condition preserves more information carried by the elastic waves. It also solves the polarization problem of converted-wave imaging. Partial images from different sources with correct polarizations can be stacked to generate a final image. Numerical examples using 2D synthetic data sets are presented to show the feasibility of this method.


2000 ◽  
Vol 19 (3) ◽  
pp. 286-293 ◽  
Author(s):  
Klaas Koster ◽  
Pieter Gabriels ◽  
Matthias Hartung ◽  
John Verbeek ◽  
Geurt Deinum ◽  
...  

Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1226-1237 ◽  
Author(s):  
Irina Apostoiu‐Marin ◽  
Andreas Ehinger

Prestack depth migration can be used in the velocity model estimation process if one succeeds in interpreting depth events obtained with erroneous velocity models. The interpretational difficulty arises from the fact that migration with erroneous velocity does not yield the geologically correct reflector geometries and that individual migrated images suffer from poor signal‐to‐noise ratio. Moreover, migrated events may be of considerable complexity and thus hard to identify. In this paper, we examine the influence of wrong velocity models on the output of prestack depth migration in the case of straight reflector and point diffractor data in homogeneous media. To avoid obscuring migration results by artifacts (“smiles”), we use a geometrical technique for modeling and migration yielding a point‐to‐point map from time‐domain data to depth‐domain data. We discover that strong deformation of migrated events may occur even in situations of simple structures and small velocity errors. From a kinematical point of view, we compare the results of common‐shot and common‐offset migration. and we find that common‐offset migration with erroneous velocity models yields less severe image distortion than common‐shot migration. However, for any kind of migration, it is important to use the entire cube of migrated data to consistently interpret in the prestack depth‐migrated domain.


2021 ◽  
Author(s):  
Olaf Hellwig ◽  
Stefan Buske

<p>The polymetallic, hydrothermal deposit of the Freiberg mining district in the southeastern part of Germany is characterised by ore veins that are framed by Proterozoic orthogneiss. The ore veins consist mainly of quarz, sulfides, carbonates, barite and flourite, which are associated with silver, lead and tin. Today the Freiberg University of Mining and Technology is operating the shafts Reiche Zeche and Alte Elisabeth for research and teaching purposes with altogether 14 km of accessible underground galleries. The mine together with the most prominent geological structures of the central mining district are included in a 3D digital model, which is used in this study to study seismic acquisition geometries that can help to image the shallow as well as the deeper parts of the ore-bearing veins. These veins with dip angles between 40° and 85° are represented by triangulated surfaces in the digital geological model. In order to import these surfaces into our seismic finite-difference simulation code, they have to be converted into bodies with a certain thickness and specific elastic properties in a first step. In a second step, these bodies with their properties have to be discretized on a hexahedral finite-difference grid with dimensions of 1000 m by 1000 m in the horizontal direction and 500 m in the vertical direction. Sources and receiver lines are placed on the surface along roads near the mine. A Ricker wavelet with a central frequency of 50 Hz is used as the source signature at all excitation points. Beside the surface receivers, additional receivers are situated in accessible galleries of the mine at three different depth levels of 100 m, 150 m and 220 m below the surface. Since previous mining activities followed primarily the ore veins, there are only few pilot-headings that cut through longer gneiss sections. Only these positions surrounded by gneiss are suitable for imaging the ore veins. Based on this geometry, a synthetic seismic data set is generated with our explicit finite-difference time-stepping scheme, which solves the acoustic wave equation with second order accurate finite-difference operators in space and time. The scheme is parallelised using a decomposition of the spatial finite-difference grid into subdomains and Message Passing Interface for the exchange of the wavefields between neighbouring subdomains. The resulting synthetic seismic shot gathers are used as input for Kirchhoff prestack depth migration as well as Fresnel volume migration in order to image the ore veins. Only a top mute to remove the direct waves and a time-dependent gain to correct the amplitude decay due to the geometrical spreading are applied to the data before the migration. The combination of surface and in-mine acquisition helps to improve the image of the deeper parts of the dipping ore veins. Considering the limitations for placing receivers in the mine, Fresnel volume migration as a focusing version of Kirchhoff prestack depth migration helps to avoid migration artefacts caused by this sparse and limited acquisition geometry.</p>


2006 ◽  
Author(s):  
Scott MacKay ◽  
Héctor Ramírez Jiménez ◽  
Jorge San Martín Romero ◽  
Mark Morford

Sign in / Sign up

Export Citation Format

Share Document