Integrated wide‐angle and near‐vertical subbasalt study using large‐aperture seismic data from the Faeroe—Shetland region

Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1340-1348 ◽  
Author(s):  
Juergen Fruehn ◽  
Moritz M. Fliedner ◽  
Robert S. White

Acquiring large‐aperture seismic data (38 km maximum offset) along a profile crossing the Faeroe—Shetland basin in the North Atlantic enables us to use wide‐angle reflections and refractions, in addition to conventional streamer data (0–6 km), for subbasalt imaging. The wide‐angle results are complemented and confirmed by images obtained from the conventional near‐vertical‐offset range. Traveltime tomography applied to the wide‐angle data shows a low‐velocity layer (3.5–4.5 km/s) underneath southeastward‐thinning lava flows, suggesting a 2.5–3.0‐km‐thick sedimentary layer. The velocity model obtained from traveltime tomography is used to migrate wide‐angle reflections from large offsets that arrive ahead of the water‐wave cone. The migrated image shows base‐basalt and sub—basalt reflections that are locally coincident with the tomographic boundaries. Application of a new multiple suppression technique and controlled stacking of the conventional streamer data produces seismic sections consistent with the wide‐angle results. Prestack depth migration of the near‐vertical offsets shows a continuous base‐basalt reflection and a clearly defined termination of the basalt flows.

Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


2019 ◽  
Vol 38 (4) ◽  
pp. 268-273
Author(s):  
Maheswara Phani ◽  
Sushobhan Dutta ◽  
Kondal Reddy ◽  
Sreedurga Somasundaram

Raageshwari Deep Gas (RDG) Field is situated in the southern part of the Barmer Basin in Rajasthan, India, at a depth of 3000 m. With both clastic and volcanic lithologies, the main reservoirs are tight, and hydraulic fracturing is required to enhance productivity, especially to improve permeability through interaction of induced fractures with natural fractures. Therefore, optimal development of the RDG Field reservoirs requires characterization of faults and natural fractures. To address this challenge, a wide-azimuth 3D seismic data set over the RDG Field was processed to sharply define faults and capture anisotropy related to open natural fractures. Anisotropy was indicated by the characteristic sinusoidal nature of gather reflection events processed using conventional tilted transverse imaging (TTI); accordingly, we used orthorhombic imaging to correct for these, to quantify fracture-related anisotropy, and to yield a more correct subsurface image. During prestack depth migration (PSDM) processing of the RDG data, TTI and orthorhombic velocity modeling was done with azimuthal sectoring of reflection arrivals. The resultant PSDM data using this velocity model show substantial improvement in image quality and vertical resolution at the reservoir level compared to vintage seismic data. The improved data quality enabled analysis of specialized seismic attributes like curvature and thinned fault likelihood for more reliable characterization of faults and fractures. These attributes delineate the location and distribution of probable fracture networks within the volcanic reservoirs. Interpreted subtle faults, associated with fracture zones, were validated with microseismic, production, and image log data.


2005 ◽  
Vol 42 (6) ◽  
pp. 1277-1293 ◽  
Author(s):  
Ron M Clowes ◽  
Philip TC Hammer ◽  
Gabriela Fernández-Viejo ◽  
J Kim Welford

The SNORCLE refraction – wide-angle reflection (R/WAR) experiment, SNORE'97, included four individual lines along the three transect corridors. A combination of SNORE'97 results with those from earlier studies permits generation of a 2000 km long lithospheric velocity model that extends from the Archean Slave craton to the present Pacific basin. Using this model and coincident near-vertical incidence (NVI) reflection data and geological information, an interpreted cross section that exemplifies 4 Ga of lithospheric development is generated. The velocity structural models correlate well with the reflection sections and provide additional structural, compositional, and thermal constraints. Geological structures and some faults are defined in the upper crust. At a larger scale, the seismic data identify a variety of orogenic styles ranging from thin- to thick-skinned accretion in the Cordillera and crustal-scale tectonic wedging associated with both Paleoproterozoic and Mesozoic collisions. Models of Poisson's ratio support the NVI interpretation that a thick wedge of cratonic metasediments underlies the eastern accreted Cordilleran terranes. Despite the variety of ages, orogenic styles, and tectono-magmatic deformations that are spanned by the seismic corridors, the Moho remains remarkably flat and shallow (33–36 km) across the majority of the transect. Significant variations only occur at major tectonic boundaries. Laterally variable crustal velocities are consistently slower beneath the Cordillera than beneath the cratonic crust. This is consistent with the high temperatures (800–900 °C) required by the slow upper mantle velocities (7.8–7.9 km/s) observed beneath much of the Cordillera. Heterogeneity of the lithospheric mantle is indicated by wide-angle reflections below the Precambrian domains and the western Cordillera.


Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. S157-S164 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan

We have extended prestack parsimonious Kirchhoff depth migration for 2D, two-component, reflected elastic seismic data for a P-wave source recorded at the earth’s surface. First, we separated the P-to-P reflected (PP-) waves and P-to-S converted (PS-) waves in an elastic common-source gather into P-wave and S-wave seismograms. Next, we estimated source-ray parameters (source p values) and receiver-ray parameters (receiver p values) for the peaks and troughs above a threshold amplitude in separated P- and S-wavefields. For each PP and PS reflection, we traced (1) a source ray in the P-velocity model in the direction of the emitted ray angle (determined by the source p value) and (2) a receiver ray in the P- or S-velocity model back in the direction of the emergent PP- or PS-wave ray angle (determined by the PP- or PS-wave receiver p value), respectively. The image-point position was adjusted from the intersection of the source and receiver rays to the point where the sum of the source time and receiver-ray time equaled the two-way traveltime. The orientation of the reflector surface was determined to satisfy Snell’s law at the intersection point. The amplitude of a P-wave (or an S-wave) was distributed over the first Fresnel zone along the reflector surface in the P- (or S-) image. Stacking over all P-images of the PP-wave common-source gathers gave the stacked P-image, and stacking over all S-images of the PS-wave common-source gathers gave the stacked S-image. Synthetic examples showed acceptable migration quality; however, the images were less complete than those produced by scalar reverse-time migration (RTM). The computing time for the 2D examples used was about 1/30 of that for scalar RTM of the same data.


Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1303-1309 ◽  
Author(s):  
Ola Eiken ◽  
Geir Ultveit Haugen ◽  
Michel Schonewille ◽  
Adri Duijndam

Seismic reservoir monitoring has become an important tool in the management of many fields. Monitoring subtle changes in the seismic properties of a reservoir caused by production places strong demands on seismic repeatability. A lack of repeatability limits how frequently reservoir changes can be monitored or the applicability of seismic monitoring at all. In this paper we show that towing many streamers with narrow separation, combined with cross‐line interpolation of data onto predefined sail lines, can give highly repeatable marine seismic data. Results from two controlled zero time lag monitoring experiments in the North Sea demonstrate high sensitivity to changing water level and variations in lateral positions. After corrections by deterministic tidal time shifts and spatial interpolation of the irregularly sampled streamer data, relative rms difference amplitude levels are as low as 12% for a deep, structurally complex field and as low as 6% for a shallow, structurally simple field. Reducing the degree of nonrepeatability to as low as 6% to 12% allows monitoring of smaller reflectivity changes. In terms of reservoir management this has three important benefits: (1) reservoirs with small seismic changes resulting from production can be monitored, (2) reservoirs with large seismic changes can be monitored more frequently, and (3) monitoring data can be used more quantitatively.


Author(s):  
A. Leprêtre ◽  
P. Schnürle ◽  
M. Evain ◽  
F. Verrier ◽  
D. Moorcroft ◽  
...  

2021 ◽  
Author(s):  
Bryant Chow

<p><b>Seismic tomography is a powerful tool for understanding Earth structure. In New Zealand, velocity models derived using ray-based tomography have been used extensively to characterize the complex plate boundary between the Australian and Pacific plates. Advances in computational capabilities now allow us to improve these velocity models using adjoint tomography, an imaging method which minimizes differences between observed and simulated seismic waveforms. We undertake the first application of adjoint tomography in New Zealand to improve a ray-based New Zealand velocity model containing the Hikurangi subduction zone and the North Island of New Zealand.</b></p> <p>In support of this work we deployed the Broadband East Coast Network (BEACON), a temporary seismic network aimed at improving coverage of the New Zealand permanent network, along the east coast of the North Island. We concurrently develop an automated, open-source workflow for full-waveform inversion using spectral element and adjoint methods. We employ this tool to assess a candidate velocity model’s suitability for adjoint tomography. Using a 3D ray-based traveltime tomography model of New Zealand, we generate synthetic seismic waveforms for more than 10 000 source–receiver pairs and evaluate waveform misfits. We subsequently perform synthetic checkerboard inversions with a realistic New Zealand source–receiver distribution. Reasonable systematic time shifts and satisfactory checkerboard resolution in synthetic inversions indicate that the candidate model is appropriate as an initial model for adjoint tomography. This assessment also demonstrates the relative ease of use and reliability of the automated tools.</p> <p>We then undertake a large-scale adjoint tomography inversion for the North Island of New Zealand using up to 1 800 unique source–receiver pairs to fit waveforms with periods 4–30 s, relating to minimum waveform sensitivities on the order of 5 km. Overall, 60 geographically well-distributed earthquakes and as many as 88 broadband station locations are included. Using a nonlinear optimization algorithm, we undertake 28 model updates of Vp and Vs over six distinct inversion legs which progressively increase resolution. The total inversion incurred a computational cost of approximately 500 000 CPU-hours. The overall time shift between observed and synthetic seismograms is reduced, and updated velocities show as much as ±30% change with respect to initial values. A formal resolution analysis using point spread tests highlights that velocity changes are strongly resolved onland and directly offshore, at depths above 30 km, with low-amplitude changes (> 1%) observed down to 100 km depth. The most striking velocity changes coincide with areas related to the active Hikurangi subduction zone.</p> <p>We interpret the updated velocity model in terms of New Zealand tectonics and geology, and observe good agreement with known basement terranes, and major structural elements such as faults, sedimentary basins, broad-scale subduction related features. We recover increased spatial heterogeneity in seismic velocities along the strike of the Hikurangi subduction zone with respect to the initial model. Below the East Coast, we interpret two localized high-velocity anomalies as previously unidentified subducted seamounts. We corroborate this interpretation with other work, and discuss the implications of deeply subducted seamounts on slip behavior along the Hikurangi margin. In the Cook Strait we observe a low-velocity zone that we interpret as a deep sedimentary basin. Strong velocity gradients bounding this low-velocity zone support hypotheses of a structural boundary here separating the North and South Islands of New Zealand. In the central North Island, low-velocity anomalies are linked to surface geology, and we relate seismic velocities at depth to crustal magmatic activity below the Taupo Volcanic Zone.</p> <p>This new velocity model provides more accurate synthetic seismograms and additional constraints on enigmatic tectonic processes related to the North Island of New Zealand. Both the velocity model itself, and the underpinning methodological contributions, improve our ever-expanding understanding of the North Island of New Zealand, the Hikurangi subduction zone, and the broader Australian-Pacific plate boundary.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Hobiger ◽  
M. Hallo ◽  
C. Schmelzbach ◽  
S. C. Stähler ◽  
D. Fäh ◽  
...  

AbstractOrbital and surface observations can shed light on the internal structure of Mars. NASA’s InSight mission allows mapping the shallow subsurface of Elysium Planitia using seismic data. In this work, we apply a classical seismological technique of inverting Rayleigh wave ellipticity curves extracted from ambient seismic vibrations to resolve, for the first time on Mars, the shallow subsurface to around 200 m depth. While our seismic velocity model is largely consistent with the expected layered subsurface consisting of a thin regolith layer above stacks of lava flows, we find a seismic low-velocity zone at about 30 to 75 m depth that we interpret as a sedimentary layer sandwiched somewhere within the underlying Hesperian and Amazonian aged basalt layers. A prominent amplitude peak observed in the seismic data at 2.4 Hz is interpreted as an Airy phase related to surface wave energy trapped in this local low-velocity channel.


2005 ◽  
Vol 45 (1) ◽  
pp. 421
Author(s):  
P. Bocca ◽  
L. Fava ◽  
E. Stolf

3D pre-stack depth migration (PSDM) reprocessing was conducted in 2003 on a portion of the Onnia 3D seismic cube, located in exploration permit AC/P-21, Timor Sea.The main objective of the reprocessing was to obtain the best seismic depth image and the most realistic structural reconstruction of the sub-surface to mitigate the risk factors associated with trap definition (trap retention and trap efficiency). This represents one of the main challenges for oil exploration in the area.The 3D PSDM methodology was chosen as the most appropriate imaging tool to define the correct sub-surface geometry and fault imaging through the use of an appropriate velocity field. An integrated approach to building the final velocity model was adopted, with a substantial contribution from the regional geological model.Several examples are given to demonstrate that the 3D PSDM reprocessing significantly improved the seismic image and thus the confidence in the interpretation, contributing strongly to the definition of the exploration targets.The interpretation of the new seismic data has resulted in a new structural picture in which higher confidence in seismic imaging has improved fault correlation. This has enabled better structural definition at the Middle Jurassic Plover Formation level that has reduced the complexity of the large Vesta Prospect, in the centre of the Swan Graben to the northwest of East Swan–1. Improved understanding of the fault reactivation mechanism and the structural elements of the trap (trap integrity) were eventually incorporated in the prospect risking.In the Swan Graben 3D PSDM has proved to be a very powerful instrument capable of producing significant impact on the exploration even in an area with a complex geological setting and a fairly poor seismic data quality.


Sign in / Sign up

Export Citation Format

Share Document