The joint nonhyperbolic moveout inversion of PP and PS data in VTI media

Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1929-1932 ◽  
Author(s):  
Vladimir Grechka ◽  
Ilya Tsvankin

Nonhyperbolic moveout of P‐waves in horizontally layered transversely isotropic media with a vertical symmetry axis (VTI) can be used to estimate the anellipticity coefficient η in addition to the NMO velocity Vnmo,P. Those two parameters are sufficient for time processing of P‐wave data (despite a certain instability in the inversion for η), but they do not constrain the vertical velocity VP0 and the depth scale of the model. It has been suggested in the literature that this ambiguity in the depth‐domain velocity analysis for layer‐cake VTI media can be resolved by combining long‐spread reflection traveltimes of P‐waves and mode‐converted PSV‐waves. Here, we show that reflection traveltimes of horizontal PSV events help to determine the ratio of the P‐ and S‐wave vertical velocities and the NMO velocity of SV‐waves, and they give a more accurate estimate of η. However, nonhyperbolic moveout of PSV‐waves turns out to be mostly controlled by wide‐angle P‐wave traveltimes and does not provide independent information for the inversion. As a result, even for a single‐layer model and uncommonly large offsets, traveltimes of P‐ and PSV‐waves cannot be inverted for the vertical velocity and anisotropic parameters ε and δ. To reconstruct the horizontally layered VTI model from surface data, it is necessary to combine long‐spread traveltimes of pure P and SV reflections.

Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 623-631 ◽  
Author(s):  
Tariq Alkhalifah

When transversely isotropic (VTI) media with vertical symmetry axes are characterized using the zero‐dip normal moveout (NMO) velocity [[Formula: see text]] and the anisotropy parameter ηinstead of Thomsen’s parameters, time‐related processing [moveout correction, dip moveout (DMO), and time migration] become nearly independent of the vertical P- and S-wave velocities ([Formula: see text] and [Formula: see text], respectively). The independence on [Formula: see text] and [Formula: see text] is well within the limits of seismic accuracy, even for relatively strong anisotropy. The dependency on [Formula: see text] and [Formula: see text] reduces even further as the ratio [Formula: see text] decreases. In fact, for [Formula: see text], all time‐related processing depends exactly on only [Formula: see text] and η. This fortunate dependence on two parameters is demonstrated here through analytical derivations of time‐related processing equations in terms of [Formula: see text] and η. The time‐migration dispersion relation, the NMO velocity for dipping events, and the ray‐tracing equations extracted by setting [Formula: see text] (i.e., by considering VTI as acoustic) not only depend solely on [Formula: see text] and η but are much simpler than the counterpart expressions for elastic media. Errors attributed to this use of the acoustic assumption are small and may be neglected. Therefore, as in isotropic media, the acoustic model arising from setting [Formula: see text], although not exactly true for VTI media, can serve as a useful approximation to the elastic model for the kinematics of P-wave data. This approximation can boost the efficiency of imaging and DMO programs for VTI media as well as simplify their description.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA113-WA123 ◽  
Author(s):  
Kurt T. Nihei ◽  
Seiji Nakagawa ◽  
Frederic Reverdy ◽  
Larry R. Myer ◽  
Luca Duranti ◽  
...  

Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.


Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 1095-1107 ◽  
Author(s):  
Ilya Tsvankin ◽  
Leon Thomsen

In anisotropic media, the short‐spread stacking velocity is generally different from the root‐mean‐square vertical velocity. The influence of anisotropy makes it impossible to recover the vertical velocity (or the reflector depth) using hyperbolic moveout analysis on short‐spread, common‐midpoint (CMP) gathers, even if both P‐ and S‐waves are recorded. Hence, we examine the feasibility of inverting long‐spread (nonhyperbolic) reflection moveouts for parameters of transversely isotropic media with a vertical symmetry axis. One possible solution is to recover the quartic term of the Taylor series expansion for [Formula: see text] curves for P‐ and SV‐waves, and to use it to determine the anisotropy. However, this procedure turns out to be unstable because of the ambiguity in the joint inversion of intermediate‐spread (i.e., spreads of about 1.5 times the reflector depth) P and SV moveouts. The nonuniqueness cannot be overcome by using long spreads (twice as large as the reflector depth) if only P‐wave data are included. A general analysis of the P‐wave inverse problem proves the existence of a broad set of models with different vertical velocities, all of which provide a satisfactory fit to the exact traveltimes. This strong ambiguity is explained by a trade‐off between vertical velocity and the parameters of anisotropy on gathers with a limited angle coverage. The accuracy of the inversion procedure may be significantly increased by combining both long‐spread P and SV moveouts. The high sensitivity of the long‐spread SV moveout to the reflector depth permits a less ambiguous inversion. In some cases, the SV moveout alone may be used to recover the vertical S‐wave velocity, and hence the depth. Success of this inversion depends on the spreadlength and degree of SV‐wave velocity anisotropy, as well as on the constraints on the P‐wave vertical velocity.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. C9-C20 ◽  
Author(s):  
Qi Hao ◽  
Tariq Alkhalifah

Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter [Formula: see text] in Thomsen’s notation and the S-wave attenuation coefficient [Formula: see text] in Zhu and Tsvankin’s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the proposed eikonal equation to realistic attenuating media, an alternative perturbation solution to the proposed eikonal equation, and the feasibility of applying the proposed nonhyperbolic equation for the imaginary part of the complex-valued traveltime to invert for interval attenuation parameters.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. D101-D116
Author(s):  
Julius K. von Ketelhodt ◽  
Musa S. D. Manzi ◽  
Raymond J. Durrheim ◽  
Thomas Fechner

Joint P- and S-wave measurements for tomographic cross-borehole analysis can offer more reliable interpretational insight concerning lithologic and geotechnical parameter variations compared with P-wave measurements on their own. However, anisotropy can have a large influence on S-wave measurements, with the S-wave splitting into two modes. We have developed an inversion for parameters of transversely isotropic with a vertical symmetry axis (VTI) media. Our inversion is based on the traveltime perturbation equation, using cross-gradient constraints to ensure structural similarity for the resulting VTI parameters. We first determine the inversion on a synthetic data set consisting of P-waves and vertically and horizontally polarized S-waves. Subsequently, we evaluate inversion results for a data set comprising jointly measured P-waves and vertically and horizontally polarized S-waves that were acquired in a near-surface ([Formula: see text]) aquifer environment (the Safira research site, Germany). The inverted models indicate that the anisotropy parameters [Formula: see text] and [Formula: see text] are close to zero, with no P-wave anisotropy present. A high [Formula: see text] ratio of up to nine causes considerable SV-wave anisotropy despite the low magnitudes for [Formula: see text] and [Formula: see text]. The SH-wave anisotropy parameter [Formula: see text] is estimated to be between 0.05 and 0.15 in the clay and lignite seams. The S-wave splitting is confirmed by polarization analysis prior to the inversion. The results suggest that S-wave anisotropy may be more severe than P-wave anisotropy in near-surface environments and should be taken into account when interpreting cross-borehole S-wave data.


Geophysics ◽  
2021 ◽  
pp. 1-57
Author(s):  
Bowen Li ◽  
Alexey Stovas

Characterizing the kinematics of seismic waves in elastic vertical transversely isotropic (VTI) media involves four independent parameters. To reduce the complexity, the acoustic approximation for P-waves reduces the number of required parameters to three by setting the vertical S-wave velocity to zero. However, since only the SV-wave phase velocities parallel or perpendicular to the symmetry axis are indirectly set to zero, the acoustic approximation leads to coupled P-wave components and SV-wave artifacts. The new acoustic approximation suggests setting the vertical S-wave velocity as a phase angle-dependent variable so that the SV-wave phase velocity is zero at all phase angles. We find that manipulating this parameter is a valid way for P-wave approximation, but doing so inevitably leads to zero- or non-zero-valued spurious SV-wave components. Thus, we have developed a novel approach to efficiently approximate and thoroughly separate the two wave modes in VTI media. First, the exact P- and SV-wave phase velocity expressions are rewritten by introducing an auxiliary function. After confirming the insensitivity of this function, we construct a new expression for it and obtain simplified P- and SV-wave phase velocity expressions, which are three- and four-parameter, respectively. This approximation process leads to the same reasonable error for both wave modes. Accuracy analysis indicates that for the P-wave, the overall accuracy performance of our approach is comparable to that of some existing three-parameter approximations. We then derive the corresponding P- and SV-wave equations in tilted transversely isotropic (TTI) media and provide two available solutions, the hybrid finite-difference/pseudo-spectral scheme and the low-rank approach. Numerical examples illustrate the separability and high accuracy of the proposed P- and SV-wave simulation methods in TTI media.


Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1839-1854 ◽  
Author(s):  
Tariq Alkhalifah

P‐wave reflections from horizontal interfaces in transversely isotropic (TI) media have nonhyperbolic moveout. It has been shown that such moveout as well as all time‐related processing in TI media with a vertical symmetry axis (VTI media) depends on only two parameters, [Formula: see text] and η. These two parameters can be estimated from the dip‐moveout behavior of P‐wave surface seismic data. Alternatively, one could use the nonhyperbolic moveout for parameter estimation. The quality of resulting estimates depends largely on the departure of the moveout from hyperbolic and its sensitivity to the estimated parameters. The size of the nonhyperbolic moveout in TI media is dependent primarily on the anisotropy parameter η. An “effective” version of this parameter provides a useful measure of the nonhyperbolic moveout even in v(z) isotropic media. Moreover, effective η, [Formula: see text], is used to show that the nonhyperbolic moveout associated with typical TI media (e.g., shales, with η ≃ 0.1) is larger than that associated with typical v(z) isotropic media. The departure of the moveout from hyperbolic is increased when typical anisotropy is combined with vertical heterogeneity. Larger offset‐to‐depth ratios (X/D) provide more nonhyperbolic information and, therefore, increased stability and resolution in the inversion for [Formula: see text]. The X/D values (e.g., X/D > 1.5) needed for obtaining stability and resolution are within conventional acquisition limits, especially for shallow targets. Although estimation of η using nonhyperbolic moveouts is not as stable as using the dip‐moveout method of Alkhalifah and Tsvankin, particularly in the absence of large offsets, it does offer some flexibility. It can be applied in the absence of dipping reflectors and also may be used to estimate lateral η variations. Application of the nonhyperbolic inversion to data from offshore Africa demonstrates its usefulness, especially in estimating lateral and vertical variations in η.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. C161-C172 ◽  
Author(s):  
Xueyan Li ◽  
Hejun Zhu

Starting from the dispersion relation and setting S-wave velocity along symmetry axes to zero, pseudoacoustic-wave equations have been proposed to describe the kinematics of acoustic wavefields in transversely isotropic (TI) and orthorhombic media. To date, the numerical stability of the pseudoacoustic-wave equations has been improved by developing coupled systems of wave equations; however, most simulations still suffer from S-wave artifacts that are the fundamental solutions of the fourth- and sixth-order partial differential equations. Pure quasi-P-wave equations accurately describe the traveltimes of P-waves in TI and orthorhombic media and are free of S-wave artifacts. However, it is difficult to directly solve the pure quasi-P-wave equations using conventional finite-difference schemes due to the presence of pseudo-differential operators. We approximated these pseudo-differential operators by algebraic expressions, whose coefficients can be determined by minimizing differences between the true and approximated values of the pseudo-differential operators in the wavenumber domain. The derived new coupled systems involve modified acoustic-wave equations and a Poisson’s equation that can be solved by conventional finite-difference stencils and fast Poisson’s solver. Several 2D and 3D numerical examples demonstrate that the simulations based on the new systems are free of S-wave artifacts and have correct kinematics of quasi-P-waves in TI and orthorhombic media.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. C1-C12 ◽  
Author(s):  
Shibo Xu ◽  
Alexey Stovas ◽  
Tariq Alkhalifah ◽  
Hitoshi Mikada

Seismic data processing in the elastic anisotropic model is complicated due to multiparameter dependency. Approximations to the P-wave kinematics are necessary for practical purposes. The acoustic approximation for P-waves in a transversely isotropic medium with a vertical symmetry axis (VTI) simplifies the description of wave propagation in elastic media, and as a result, it is widely adopted in seismic data processing and analysis. However, finite-difference implementations of that approximation are plagued with S-wave artifacts. Specifically, the resulting wavefield also includes artificial diamond-shaped S-waves resulting in a redundant signal for many applications that require pure P-wave data. To derive a totally S-wave-free acoustic approximation, we have developed a new acoustic approximation for pure P-waves that is totally free of S-wave artifacts in the homogeneous VTI model. To keep the S-wave velocity equal to zero, we formulate the vertical S-wave velocity to be a function of the model parameters, rather than setting it to zero. Then, the corresponding P-wave phase and group velocities for the new acoustic approximation are derived. For this new acoustic approximation, the kinematics is described by a new eikonal equation for pure P-wave propagation, which defines the new vertical slowness for the P-waves. The corresponding perturbation-based approximation for our new eikonal equation is used to compare the new equation with the original acoustic eikonal. The accuracy of our new P-wave acoustic approximation is tested on numerical examples for homogeneous and multilayered VTI models. We find that the accuracy of our new acoustic approximation is as good as the original one for the phase velocity, group velocity, and the kinematic parameters such as vertical slowness, traveltime, and relative geometric spreading. Therefore, the S-wave-free acoustic approximation could be further applied in seismic processing that requires pure P-wave data.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. C75-C83 ◽  
Author(s):  
Zedong Wu ◽  
Tariq Alkhalifah

The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute most of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and they depend on fewer medium parameters. However, conventional solutions of the acoustic-wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we separate the quasi-P-wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the nonelliptic anisotropic components, which form a pseudodifferential operator. We then develop a separable approximation of the dispersion relation of nonelliptic-anisotropic components, specifically for transversely isotropic media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the nonelliptical terms represented in the Fourier domain. A frequency-domain Helmholtz formulation of the approach renders the iterative implementation efficient because the cost is dominated by the lower-upper decomposition of the impedance matrix for the simpler elliptical anisotropic model. In addition, the resulting wavefield is free of S-wave artifacts and has a balanced amplitude. Numerical examples indicate that the method is reasonably accurate and efficient.


Sign in / Sign up

Export Citation Format

Share Document