Wavelet-based detection of singularities in acoustic impedances from surface seismic reflection data

Geophysics ◽  
2008 ◽  
Vol 73 (1) ◽  
pp. V1-V9 ◽  
Author(s):  
Chun-Feng Li ◽  
Christopher Liner

Although the passage of singularity information from acoustic impedance to seismic traces is now well understood, it remains unanswered how routine seismic processing, mode conversions, and multiple reflections can affect the singularity analysis of surface seismic data. We make theoretical investigations on the transition of singularity behaviors from acoustic impedances to surface seismic data. We also perform numerical, wavelet-based singularity analysis on an elastic synthetic data set that is processed through routine seismic processing steps (such as stacking and migration) and that contains mode conversions, multiple reflections, and other wave-equation effects. Theoretically, seismic traces can be approximated as proportional to a smoothed version of the [Formula: see text] derivative of acoustic impedance,where [Formula: see text] is the vanishing moment of the seismic wavelet. This theoretical approach forms the basis of linking singularity exponents (Hölder exponents) in acoustic impedance with those computable from seismic data. By using wavelet-based multiscale analysis with complex Morlet wavelets, we can estimate singularity strengths and localities in subsurface impedance directly from surface seismic data. Our results indicate that rich singularity information in acoustic impedance variations can be preserved by surface seismic data despite data-acquisition and processing activities. We also show that high-resolution detection of singularities from real surface seismic data can be achieved with a proper choice of the scale of the mother wavelet in the wavelet transform. Singularity detection from surface seismic data thus can play a key role in stratigraphic analysis and acoustic impedance inversion.

Geophysics ◽  
1967 ◽  
Vol 32 (2) ◽  
pp. 207-224 ◽  
Author(s):  
John D. Marr ◽  
Edward F. Zagst

The more recent developments in common‐depth‐point techniques to attenuate multiple reflections have resulted in an exploration capability comparable to the development of the seismic reflection method. The combination of new concepts in digital seismic data processing with CDP techniques is creating unforeseen exploration horizons with vastly improved seismic data. Major improvements in multiple reflection and reverberation attenuation are now attainable with appropriate CDP geometry and special CDP stacking procedures. Further major improvements are clearly evident in the very near future with the use of multichannel digital filtering‐stacking techniques and the application of deconvolution as the first step in seismic data processing. CDP techniques are briefly reviewed and evaluated with real and experimental data. Synthetic data are used to illustrate that all seismic reflection data should be deconvolved as the first processing step.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. A25-A29
Author(s):  
Lele Zhang

Migration of seismic reflection data leads to artifacts due to the presence of internal multiple reflections. Recent developments have shown that these artifacts can be avoided using Marchenko redatuming or Marchenko multiple elimination. These are powerful concepts, but their implementation comes at a considerable computational cost. We have derived a scheme to image the subsurface of the medium with significantly reduced computational cost and artifacts. This scheme is based on the projected Marchenko equations. The measured reflection response is required as input, and a data set with primary reflections and nonphysical primary reflections is created. Original and retrieved data sets are migrated, and the migration images are multiplied with each other, after which the square root is taken to give the artifact-reduced image. We showed the underlying theory and introduced the effectiveness of this scheme with a 2D numerical example.


2016 ◽  
Vol 4 (4) ◽  
pp. T507-T519 ◽  
Author(s):  
Yousf Abushalah ◽  
Laura Serpa

The Mamuniyat petroleum reservoir in southwestern Libya is comprised of clean sandstones and intercalated shale and sand facies that are characterized by spatial porosity variations. Seismic reflection data from the field exhibit relatively low vertical seismic resolution, side lobes of reflection wavelets, reflection interference, and low acoustic impedance contrast between the reservoir and the units underneath the reservoir, which make mapping those facies a difficult task. In the absence of broadband seismic data, optimizing frequency bands of bandlimited data can be used to suppress pseudoreflectors resulting from side-lobe effects and help to separate the clean sandstone facies of the reservoir. We have optimized the data based on our investigation of seismic frequency bands and used instantaneous frequency analysis to reveal the reflection discontinuity that is mainly associated with the reservoir boundary of the sandstone facies of the clean Mamuniyat reservoir. We also preformed rock-physics diagnostic modeling and inverted the seismic data using spectral-based colored inversion into relative acoustic impedance. The inverted impedance matches the up-scaled impedance from the well data and the inversion of relative acoustic impedance confirms the conclusion that was drawn from the instantaneous frequency results. The interpretation of facies distributions based on the instantaneous frequency was supported by the inversion results and the rock-physics models.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. R57-R74 ◽  
Author(s):  
Santi Kumar Ghosh ◽  
Animesh Mandal

Because seismic reflection data are band limited, acoustic impedance profiles derived from them are nonunique. The conventional inversion methods counter the nonuniqueness either by stabilizing the answer with respect to an initial model or by imposing mathematical constraints such as sparsity of the reflection coefficients. By making a nominal assumption of an earth model locally consisting of a stack of homogeneous and horizontal layers, we have formulated a set of linear equations in which the reflection coefficients are the unknowns and the recursively integrated seismic trace constitute the data. Drawing only on first principles, the Zoeppritz equation in this case, the approach makes a frontal assault on the problem of reconstructing reflection coefficients from band-limited data. The local layer-cake assumption and the strategy of seeking a singular value decomposition solution of the linear equations counter the nonuniqueness, provided that the objective is to reconstruct a smooth version of the impedance profile that includes only its crude structures. Tests on synthetic data generated from elementary models and from measured logs of acoustic impedance demonstrated the efficacy of the method, even when a significant amount of noise was added to the data. The emergence of consistent estimates of impedance, approximating the original impedance, from synthetic data generated for several frequency bands has inspired our confidence in the method. The other attractive outputs of the method are as follows: (1) an accurate estimate of the impedance mean, (2) an accurate reconstruction of the direct-current (DC) frequency of the reflectivity, and (3) an acceptable reconstruction of the broad outline of the original impedance profile. These outputs can serve as constraints for either more refined inversions or geologic interpretations. Beginning from the restriction of band-limited data, we have devised a method that neither requires a starting input model nor imposes mathematical constraints on the earth reflectivity and still yielded significant and relevant geologic information.


2021 ◽  
Author(s):  
Ramon Carbonell ◽  
Yesenia Martinez ◽  
Irene de Felipe ◽  
Juan Alcalde ◽  
Imma Palomeras ◽  
...  

<p><span>Hardware and software innovations taking place since the commercial development of seismic reflection imaging in the 60’s and early 70’s have resulted in various improved powerful seismic imaging solutions. Overall, these have been very successful in contrasting geological environments pursuing a wide variety of different targets. The innovative advances in seismic processing may constitute critical tools when analyzing seismic data acquired in highly heterogeneous geologic environments as they can efficiently increase the resolution power. In addition, they can become relevant when using modern acquisition instrumentation and strategies. Furthermore, these new developments significantly increase the value of legacy seismic reflection data. Currently, reassessing controlled source seismic data is becoming a critical issue mostly due to the increasing difficulties for acquiring new profiles posed by environmental regulations and high prices. However, the knowledge of the subsurface is an asset for our society, for example: </span><span><span>land-use planning and management; natural risk assessments; or exploration and exploitation for geo-resources. Here we present examples of analysis schemes such as seismic attribute analysis and Common Reflection Surface stacking applied on a number of old seismic reflection profiles (Deep lithospheric transects as well as high resolution profiles) in an effort to bring up their validity. Results indicate how these leading edge methods contribute to significantly improve the quality of vintage seismic data, significantly reducing reflector uncertainties and easing their interpretation. </span></span></p><p><span><span>This research is supported by: Generalitat de Catalunya (AGAUR) grant 2017SGR1022 (GREG); EU (H2020) 871121 (EPOS-SP); EIT-RaewMaterias 17024 (SIT4ME). </span></span></p><p> </p>


2021 ◽  
pp. 565-577
Author(s):  
Nowfal A. Nassir ◽  
Ahmed S. AL- Banna ◽  
Ghazi H. Al-Sharaa

The estimation of rock petrophysical parameters is an essential matter to characterize any reservoir. This research deals with the evaluation of  effective porosity (Pe), shale volume (Vsh) and water saturation (Sw) of reservoirs at Kumait and Dujalia fields, which were analyzed from well log and seismic data. The absolute acoustic impedance (AI) and relative acoustic impedance (RAI) were derived from a model which is based on the inversion of seismic 3-D post-stack data. NahrUmr formation’s sand reservoirs are identified by the RAI section of the study area. Nahr Umr sand-2 unit in Kumait field is the main reservoir; its delineation depends on the available well logs and AI sections information. The results of well logging interpretation showed a decrease of Sw and Vsh and an increase of effective porosity in the oil reservoir area, which coincides with the decrease of AI values. The existence of the water reservoir in Du-2 well revealed a convergence of the results of AI and effective porosity with those of Kumait wells , along with and some differential results of Sw and Vsh values that may be related to changes in lithology and fluid density.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. B227-B236 ◽  
Author(s):  
Hassan Masoomzadeh ◽  
Satish C. Singh ◽  
Penny J. Barton

We developed a method of moveout correction in the [Formula: see text] domain to tackle some of the problems associated with processing wide-angle seismic reflection data, including residual moveout and normal-moveout stretching. We evaluated the concept of the shifted ellipse in the [Formula: see text] domain as an alternative to the well-known concept of the shifted hyperbola in the [Formula: see text] domain. We used this shifted-ellipse concept to address the problem of residual moveout caused by vertical heterogeneity in the subsurface. We also addressed the stretching problem associated with dynamic corrections by combining selected strips from a set of constant-moveout stacks generated using a shifted-ellipse equation. Application of this method to a wide-angle data set from the Faeroe-Shetland Basin provided an enhanced image of the subbasalt structure.


2017 ◽  
Vol 5 (4) ◽  
pp. T477-T485 ◽  
Author(s):  
Ângela Pereira ◽  
Rúben Nunes ◽  
Leonardo Azevedo ◽  
Luís Guerreiro ◽  
Amílcar Soares

Numerical 3D high-resolution models of subsurface petroelastic properties are key tools for exploration and production stages. Stochastic seismic inversion techniques are often used to infer the spatial distribution of the properties of interest by integrating simultaneously seismic reflection and well-log data also allowing accessing the spatial uncertainty of the retrieved models. In frontier exploration areas, the available data set is often composed exclusively of seismic reflection data due to the lack of drilled wells and are therefore of high uncertainty. In these cases, subsurface models are usually retrieved by deterministic seismic inversion methodologies based exclusively on the existing seismic reflection data and an a priori elastic model. The resulting models are smooth representations of the real complex geology and do not allow assessing the uncertainty. To overcome these limitations, we have developed a geostatistical framework that allows inverting seismic reflection data without the need of experimental data (i.e., well-log data) within the inversion area. This iterative geostatistical seismic inversion methodology simultaneously integrates the available seismic reflection data and information from geologic analogs (nearby wells and/or analog fields) allowing retrieving acoustic impedance models. The model parameter space is perturbed by a stochastic sequential simulation methodology that handles the nonstationary probability distribution function. Convergence from iteration to iteration is ensured by a genetic algorithm driven by the trace-by-trace mismatch between real and synthetic seismic reflection data. The method was successfully applied to a frontier basin offshore southwest Europe, where no well has been drilled yet. Geologic information about the expected impedance distribution was retrieved from nearby wells and integrated within the inversion procedure. The resulting acoustic impedance models are geologically consistent with the available information and data, and the match between the inverted and the real seismic data ranges from 85% to 90% in some regions.


Geophysics ◽  
1996 ◽  
Vol 61 (1) ◽  
pp. 232-243 ◽  
Author(s):  
Satish C. Singh ◽  
R. W. Hobbs ◽  
D. B. Snyder

A method to process dual‐streamer data with under and over configuration is presented. The method combines the results of dephase‐sum and dephase‐subtraction methods. In the dephase methods, the response of one streamer is time shifted so that the primary arrivals on both streamers are aligned, and these responses are then summed or subtracted. The method provides a broad spectral response from dual‐streamer data and increases the signal‐to‐noise ratio by a factor of 1.5. Testing was done on synthetic data and then applied to a real data set collected by the British Institutions Reflection Profiling Syndicate (BIRPS). Its application to a deep seismic reflection data set from the British Isles shows that the reflections from the lower crust contain frequencies up to 80 Hz, suggesting that some of the lower crustal reflectors may have sharp boundaries and could be 20–30 m thick.


1997 ◽  
Vol 43 (144) ◽  
pp. 245-255 ◽  
Author(s):  
A. M. Smith

AbstractSeismic reflection data from two lines on Rutford Ice Streem are presented and are compared with data already published from a third line on the ice stream. The amplitude and phase of the reflections have been used io investigate the properties ol the sub-ice material. Multiple reflections on long record-length data allowed calibration of the reflection coefficient at the ice-bed interlace and determination of the acoustic impedance of the bed material. The characteristics of the bed material vary both along and across the ice stream. The average acoustic impedance of the bed material across the glacier at the upstream line is 3.88 x 106 kg−2 s−1. This decreases to 3.19 x 10−6 kg m−2s−1 52 km further downstream. These values are within the rang which is typical of soft sediments. Using acoustic impedance as an indicator of subgiacial porosity, some areas of the ice-stream bed are interpreted as dilatant water-saturated sediments undergoing pervasive deformation. In other areas, the bed is not deforming and basal sliding may be a more important process. The proportional the ice-stream width over which bed deformation occurs increases downstream.


Sign in / Sign up

Export Citation Format

Share Document