scholarly journals Variations in basal conditions on Rutford Ice Stream, West Antarctica

1997 ◽  
Vol 43 (144) ◽  
pp. 245-255 ◽  
Author(s):  
A. M. Smith

AbstractSeismic reflection data from two lines on Rutford Ice Streem are presented and are compared with data already published from a third line on the ice stream. The amplitude and phase of the reflections have been used io investigate the properties ol the sub-ice material. Multiple reflections on long record-length data allowed calibration of the reflection coefficient at the ice-bed interlace and determination of the acoustic impedance of the bed material. The characteristics of the bed material vary both along and across the ice stream. The average acoustic impedance of the bed material across the glacier at the upstream line is 3.88 x 106 kg−2 s−1. This decreases to 3.19 x 10−6 kg m−2s−1 52 km further downstream. These values are within the rang which is typical of soft sediments. Using acoustic impedance as an indicator of subgiacial porosity, some areas of the ice-stream bed are interpreted as dilatant water-saturated sediments undergoing pervasive deformation. In other areas, the bed is not deforming and basal sliding may be a more important process. The proportional the ice-stream width over which bed deformation occurs increases downstream.

1997 ◽  
Vol 43 (144) ◽  
pp. 245-255 ◽  
Author(s):  
A. M. Smith

AbstractSeismic reflection data from two lines on Rutford Ice Streem are presented and are compared with data already published from a third line on the ice stream. The amplitude and phase of the reflections have been used io investigate the properties ol the sub-ice material. Multiple reflections on long record-length data allowed calibration of the reflection coefficient at the ice-bed interlace and determination of the acoustic impedance of the bed material. The characteristics of the bed material vary both along and across the ice stream. The average acoustic impedance of the bed material across the glacier at the upstream line is 3.88 x 106kg−2s−1. This decreases to 3.19 x 10−6kg m−2s−152 km further downstream. These values are within the rang which is typical of soft sediments. Using acoustic impedance as an indicator of subgiacial porosity, some areas of the ice-stream bed are interpreted as dilatant water-saturated sediments undergoing pervasive deformation. In other areas, the bed is not deforming and basal sliding may be a more important process. The proportional the ice-stream width over which bed deformation occurs increases downstream.


Geophysics ◽  
2008 ◽  
Vol 73 (1) ◽  
pp. V1-V9 ◽  
Author(s):  
Chun-Feng Li ◽  
Christopher Liner

Although the passage of singularity information from acoustic impedance to seismic traces is now well understood, it remains unanswered how routine seismic processing, mode conversions, and multiple reflections can affect the singularity analysis of surface seismic data. We make theoretical investigations on the transition of singularity behaviors from acoustic impedances to surface seismic data. We also perform numerical, wavelet-based singularity analysis on an elastic synthetic data set that is processed through routine seismic processing steps (such as stacking and migration) and that contains mode conversions, multiple reflections, and other wave-equation effects. Theoretically, seismic traces can be approximated as proportional to a smoothed version of the [Formula: see text] derivative of acoustic impedance,where [Formula: see text] is the vanishing moment of the seismic wavelet. This theoretical approach forms the basis of linking singularity exponents (Hölder exponents) in acoustic impedance with those computable from seismic data. By using wavelet-based multiscale analysis with complex Morlet wavelets, we can estimate singularity strengths and localities in subsurface impedance directly from surface seismic data. Our results indicate that rich singularity information in acoustic impedance variations can be preserved by surface seismic data despite data-acquisition and processing activities. We also show that high-resolution detection of singularities from real surface seismic data can be achieved with a proper choice of the scale of the mother wavelet in the wavelet transform. Singularity detection from surface seismic data thus can play a key role in stratigraphic analysis and acoustic impedance inversion.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. A25-A29
Author(s):  
Lele Zhang

Migration of seismic reflection data leads to artifacts due to the presence of internal multiple reflections. Recent developments have shown that these artifacts can be avoided using Marchenko redatuming or Marchenko multiple elimination. These are powerful concepts, but their implementation comes at a considerable computational cost. We have derived a scheme to image the subsurface of the medium with significantly reduced computational cost and artifacts. This scheme is based on the projected Marchenko equations. The measured reflection response is required as input, and a data set with primary reflections and nonphysical primary reflections is created. Original and retrieved data sets are migrated, and the migration images are multiplied with each other, after which the square root is taken to give the artifact-reduced image. We showed the underlying theory and introduced the effectiveness of this scheme with a 2D numerical example.


Geophysics ◽  
1955 ◽  
Vol 20 (1) ◽  
pp. 68-86 ◽  
Author(s):  
C. Hewitt Dix

The purpose of this paper is to discuss field and interpretive techniques which permit, in favorable cases, the quite accurate determination of seismic interval velocities prior to drilling. A simple but accurate formula is developed for the quick calculation of interval velocities from “average velocities” determined by the known [Formula: see text] technique. To secure accuracy a careful study of multiple reflections is necessary and this is discussed. Although the principal objective in determining velocities is to allow an accurate structural interpretation to be made from seismic reflection data, an important secondary objective is to get some lithological information. This is obtained through a correlation of velocities with rock type and depth.


Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 99-102
Author(s):  
C. Grace Barcheck ◽  
Susan Y. Schwartz ◽  
Slawek Tulaczyk

Abstract Icequakes radiating from an ice-stream base provide insights into otherwise difficult to observe sub-kilometer-scale basal heterogeneity. We detect basal icequakes beneath an ∼3-km-wide seismic sensor network installed on the Whillans Ice Plain (WIP) in West Antarctica, and we use S-wave back-projection to detect and locate thousands of basal icequakes occurring over 14 and 21 days in January 2014 and 2015, respectively. We find flow-parallel streaks of basal icequakes beneath the WIP, which we conjecture are related to the presence of mega-scale glacial lineations (MSGLs) indicated by ice-penetrating radar, with at least one streak originating in a local trough adjacent to a MSGL. Patterned basal seismicity can be caused by systematic spatial variation in basal pore pressure, bed-material frictional properties, or both. We interpret these flow-parallel icequake streaks as being due to frictionally heterogeneous bed materials in the presence of a streamlined ice-stream bed: bedform ridges correspond to aseismic, high-porosity deforming till, and some troughs to ephemeral exposures of deeper, seismogenic material such as lodged till or older sediments or rocks. Our results are consistent with MSGL formation by either erosion in troughs to expose deeper seismogenic material, or deposition of aseismic high-porosity till in bedform highs. Our results also suggest that evolving subglacial geomorphology can impact basal traction by reorganizing the spatial distribution of basal materials with varying mechanical properties.


2016 ◽  
Vol 4 (4) ◽  
pp. T507-T519 ◽  
Author(s):  
Yousf Abushalah ◽  
Laura Serpa

The Mamuniyat petroleum reservoir in southwestern Libya is comprised of clean sandstones and intercalated shale and sand facies that are characterized by spatial porosity variations. Seismic reflection data from the field exhibit relatively low vertical seismic resolution, side lobes of reflection wavelets, reflection interference, and low acoustic impedance contrast between the reservoir and the units underneath the reservoir, which make mapping those facies a difficult task. In the absence of broadband seismic data, optimizing frequency bands of bandlimited data can be used to suppress pseudoreflectors resulting from side-lobe effects and help to separate the clean sandstone facies of the reservoir. We have optimized the data based on our investigation of seismic frequency bands and used instantaneous frequency analysis to reveal the reflection discontinuity that is mainly associated with the reservoir boundary of the sandstone facies of the clean Mamuniyat reservoir. We also preformed rock-physics diagnostic modeling and inverted the seismic data using spectral-based colored inversion into relative acoustic impedance. The inverted impedance matches the up-scaled impedance from the well data and the inversion of relative acoustic impedance confirms the conclusion that was drawn from the instantaneous frequency results. The interpretation of facies distributions based on the instantaneous frequency was supported by the inversion results and the rock-physics models.


Geophysics ◽  
1989 ◽  
Vol 54 (1) ◽  
pp. 122-126 ◽  
Author(s):  
R. J. J. Hardy ◽  
M. R. Warner ◽  
R. W. Hobbs

The many techniques that have been developed to remove multiple reflections from seismic data all leave remnant energy which can cause ambiguity in interpretation. The removal methods are mostly based on periodicity (e.g., Sinton et al., 1978) or the moveout difference between primary and multiple events (e.g., Schneider et al., 1965). They work on synthetic and selected field data sets but are rather unsatisfactory when applied to high‐amplitude, long‐period multiples in marine seismic reflection data acquired in moderately deep (700 m to 3 km) water. Differential moveout is often better than periodicity at discriminating between types of events because, while a multiple series may look periodic to the eye, it is only exactly so on zero‐offset reflections from horizontal layers. The technique of seismic event labeling described below works by returning offset information from CDP gathers to a stacked section by color coding, thereby discriminating between seismic reflection events by differential normal moveout. Events appear as a superposition of colors; the direction of color fringes indicates whether an event has been overcorrected or undercorrected for its hyperbolic normal moveout.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. R57-R74 ◽  
Author(s):  
Santi Kumar Ghosh ◽  
Animesh Mandal

Because seismic reflection data are band limited, acoustic impedance profiles derived from them are nonunique. The conventional inversion methods counter the nonuniqueness either by stabilizing the answer with respect to an initial model or by imposing mathematical constraints such as sparsity of the reflection coefficients. By making a nominal assumption of an earth model locally consisting of a stack of homogeneous and horizontal layers, we have formulated a set of linear equations in which the reflection coefficients are the unknowns and the recursively integrated seismic trace constitute the data. Drawing only on first principles, the Zoeppritz equation in this case, the approach makes a frontal assault on the problem of reconstructing reflection coefficients from band-limited data. The local layer-cake assumption and the strategy of seeking a singular value decomposition solution of the linear equations counter the nonuniqueness, provided that the objective is to reconstruct a smooth version of the impedance profile that includes only its crude structures. Tests on synthetic data generated from elementary models and from measured logs of acoustic impedance demonstrated the efficacy of the method, even when a significant amount of noise was added to the data. The emergence of consistent estimates of impedance, approximating the original impedance, from synthetic data generated for several frequency bands has inspired our confidence in the method. The other attractive outputs of the method are as follows: (1) an accurate estimate of the impedance mean, (2) an accurate reconstruction of the direct-current (DC) frequency of the reflectivity, and (3) an acceptable reconstruction of the broad outline of the original impedance profile. These outputs can serve as constraints for either more refined inversions or geologic interpretations. Beginning from the restriction of band-limited data, we have devised a method that neither requires a starting input model nor imposes mathematical constraints on the earth reflectivity and still yielded significant and relevant geologic information.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. Q53-Q66 ◽  
Author(s):  
Joost van der Neut ◽  
Matteo Ravasi ◽  
Yi Liu ◽  
Ivan Vasconcelos

Seismic reflection data can be redatumed to a specified boundary in the subsurface by solving an inverse (or multidimensional deconvolution) problem. The redatumed data can be interpreted as an extended image of the subsurface at the redatuming boundary, depending on the subsurface offset and time. We retrieve target-enclosed extended images by using two redatuming boundaries, which are selected above and below a specified target volume. As input, we require the upgoing and downgoing wavefields at both redatuming boundaries due to impulsive sources at the earth’s surface. These wavefields can be obtained from actual measurements in the subsurface, they can be numerically modeled, or they can be retrieved by solving a multidimensional Marchenko equation. As output, we retrieved virtual reflection and transmission responses as if sources and receivers were located at the two target-enclosing boundaries. These data contain all orders of reflections inside the target volume but exclude all interactions with the part of the medium outside this volume. The retrieved reflection responses can be used to image the target volume from above or from below. We found that the images from above and below are similar (given that the Marchenko equation is used for wavefield retrieval). If a model with sharp boundaries in the target volume is available, the redatumed data can also be used for two-sided imaging, where the retrieved reflection and transmission responses are exploited. Because multiple reflections are used by this strategy, seismic resolution can be improved significantly. Because target-enclosed extended images are independent on the part of the medium outside the target volume, our methodology is also beneficial to reduce the computational burden of localized inversion, which can now be applied inside the target volume only, without suffering from interactions with other parts of the medium.


2021 ◽  
pp. 565-577
Author(s):  
Nowfal A. Nassir ◽  
Ahmed S. AL- Banna ◽  
Ghazi H. Al-Sharaa

The estimation of rock petrophysical parameters is an essential matter to characterize any reservoir. This research deals with the evaluation of  effective porosity (Pe), shale volume (Vsh) and water saturation (Sw) of reservoirs at Kumait and Dujalia fields, which were analyzed from well log and seismic data. The absolute acoustic impedance (AI) and relative acoustic impedance (RAI) were derived from a model which is based on the inversion of seismic 3-D post-stack data. NahrUmr formation’s sand reservoirs are identified by the RAI section of the study area. Nahr Umr sand-2 unit in Kumait field is the main reservoir; its delineation depends on the available well logs and AI sections information. The results of well logging interpretation showed a decrease of Sw and Vsh and an increase of effective porosity in the oil reservoir area, which coincides with the decrease of AI values. The existence of the water reservoir in Du-2 well revealed a convergence of the results of AI and effective porosity with those of Kumait wells , along with and some differential results of Sw and Vsh values that may be related to changes in lithology and fluid density.


Sign in / Sign up

Export Citation Format

Share Document