scholarly journals A new empirical complex electrical resistivity model

Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. E185-E191 ◽  
Author(s):  
M. Kavian ◽  
E. C. Slob ◽  
W. A. Mulder

Macroscopic measurements of electrical resistivity require frequency-dependent effective models that honor the microscopic effects observable in macroscopic measurements. Effective models based on microscopic physics exist alongside with empirical models. We adopted an empirical model approach to modify an existing physical model. This provided a description of electrical resistivity as a function of not only frequency, but also water saturation. We performed two-electrode laboratory measurements of the complex resistivity on a number of fine and medium-grained unconsolidated sand packs saturated with water of three different salinities. For frequencies between 0.1 and 1 MHz, the data were fitted with the new model and compared to fits with Archie’s law. Our model described the relaxation times and DC resistivity values as negative exponential functions with increasing water saturation. All data could be accurately described as a function of frequency and water saturation with nine parameters.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zoulin Liu ◽  
Stephen M. J. Moysey

We investigate the relationship between apparent electrical resistivity and water saturation during unstable multiphase flow. We conducted experiments in a thin, two-dimensional tank packed with glass beads, where Nigrosine dyed water was injected uniformly along one edge to displace mineral oil. The resulting patterns of fluid saturation in the tank were captured on video using the light transmission method, while the apparent resistivity of the tank was continuously measured. Different experiments were performed by varying the water application rate and orientation of the tank to control the generalized Bond number, which describes the balance between viscous, capillary, and gravity forces that affect flow instability. We observed the resistivity index to gradually decrease as water saturation increases in the tank, but sharp drops occurred as individual fingers bridged the tank. The magnitude of this effect decreased as the displacement became increasingly unstable until a smooth transition occurred for highly unstable flows. By analyzing the dynamic data using Archie’s law, we found that the apparent saturation exponent increases linearly between approximately 1 and 2 as a function of generalized Bond number, after which it remained constant for unstable flows with a generalized Bond number less than −0.106.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wu-Nan Tsai ◽  
Chien-Chih Chen ◽  
Chih-Wen Chiang ◽  
Pei-Yuan Chen ◽  
Chih-Yu Kuo ◽  
...  

Water saturation in the bedrock or colluvium is highly related to most landslide hazards, and rainfall is likely a crucial factor. The dynamic processes of onsite rock/soil mechanics could be revealed via monitoring using the electrical resistivity tomography (ERT) technique and Archie’s law. This study aims to investigate water saturation changes over time using time-lapse ERT images, providing a powerful method for monitoring landslide events. A fully automatic remote resistivity monitoring system was deployed to acquire hourly electrical resistivity data using a nontraditional hybrid array in the Lantai area of Yilan Taiping Mountain in Northeast Taiwan from 2019 to 2021. Six subzones in borehole ERT images were examined for the temporal and spatial resistivity variations, as well as possible pathways of the groundwater. Two representative cases of inverted electrical resistivity images varying with precipitation may be correlated with water saturation changes in the studied hillslope, implying the process of rainfall infiltration. Layers with decreased and increased electrical resistivity are also observed before sliding events. Accordingly, we suggest that high-frequency time-lapse ERT monitoring could play a crucial role in landslide early warning.


2021 ◽  
Author(s):  
Sabyasachi Dash ◽  
◽  
Zoya Heidari ◽  

Conventional resistivity models often overestimate water saturation in organic-rich mudrocks and require extensive calibration efforts. Conventional resistivity-porosity-saturation models assume brine in the formation as the only conductive component contributing to resistivity measurements. Enhanced resistivity models for shaly-sand analysis include clay concentration and clay-bound water as contributors to electrical conductivity. These shaly-sand models, however, consider the existing clay in the rock as dispersed, laminated, or structural, which does not reliably describe the distribution of clay network in organic-rich mudrocks. They also do not incorporate other conductive minerals and organic matter, which can significantly impact the resistivity measurements and lead to uncertainty in water saturation assessment. We recently introduced a method that quantitatively assimilates the type and spatial distribution of all conductive components to improve reserves evaluation in organic-rich mudrocks using electrical resistivity measurements. This paper aims to verify the reliability of the introduced method for the assessment of water/hydrocarbon saturation in the Wolfcamp formation of the Permian Basin. Our recently introduced resistivity model uses pore combination modeling to incorporate conductive (clay, pyrite, kerogen, brine) and non-conductive (grains, hydrocarbon) components in estimating effective resistivity. The inputs to the model are volumetric concentrations of minerals, the conductivity of rock components, and porosity obtained from laboratory measurements or interpretation of well logs. Geometric model parameters are also critical inputs to the model. To simultaneously estimate the geometric model parameters and water saturation, we develop two inversion algorithms (a) to estimate the geometric model parameters as inputs to the new resistivity model and (b) to estimate the water saturation. Rock type, pore structure, and spatial distribution of rock components affect geometric model parameters. Therefore, dividing the formation into reliable petrophysical zones is an essential step in this method. The geometric model parameters are determined for each rock type by minimizing the difference between the measured resistivity and the resistivity, estimated from Pore Combination Modeling. We applied the new rock physics model to two wells drilled in the Permian Basin. The depth interval of interest was located in the Wolfcamp formation. The rock-class-based inversion showed variation in geometric model parameters, which improved the assessment of water saturation. Results demonstrated that the new method improved water saturation estimates by 32.1% and 36.2% compared to Waxman-Smits and Archie's models, respectively, in the Wolfcamp formation. The most considerable improvement was observed in the Middle and Lower Wolfcamp formation, where the average clay concentration was relatively higher than the other zones. Results demonstrated that the proposed method was shown to improve the estimates of hydrocarbon reserves in the Permian Basin by 33%. The hydrocarbon reserves were underestimated by an average of 70000 bbl/acre when water saturation was quantified using Archie's model in the Permian Basin. It should be highlighted that the new method did not require any calibration effort to obtain model parameters for estimating water saturation. This method minimizes the need for extensive calibration efforts for the assessment of hydrocarbon/water saturation in organic-rich mudrocks. By minimizing the need for extensive calibration work, we can reduce the number of core samples acquired. This is the unique contribution of this rock-physics-based workflow.


1964 ◽  
Vol 4 (04) ◽  
pp. 285-290
Author(s):  
Edward P. Miesch ◽  
Paul B. Crawford

Abstract A study was made of the effect of permeable and impermeable lenses in a reservoir on the production capacity of a well. Both steady-state and unsteady-state data were obtained. An electrical resistivity model was used to obtain the steady- state data and thermal models were constructed to obtain the unsteady-state data. The productivity of a well is affected very greatly only when the lenses are close to the well. The effect of circular lenses on the Productivity ratio can be correlated with the distance from the center of the lens to the center of the well divided by the radius of the lens. Then this dimensionless distance is equal to six or greater, the effect of the lenses on production capacity will be negligible. The pseudo steady-state productivity of a heterogeneous reservoir can be predicted using steady- state data. Introduction Many analytical solutions of reservoir behavior assume that reservoir rock is uniform and homogeneous. Although this assumption is used, all of the data from core analyses and well logging indicate that the reservoirs are heterogeneous. Very little work has been done on the performance of heterogeneous reservoirs. The work of Landrum, et al. showed that transient phenomena in oil reservoirs could be studied with thermal models. Pickering and Cotman used thermal models to study flow in stratified reservoirs and investigated the effect of inhomogeneities in oil reservoirs on transient flow performance. Loucks made a mathematical study of the pressure build-up in a system composed of two concentric regions of different permeability. Root, Silberberg and Pirson studied the effect of me growth of the flooded region on water influx predictions using a thermal model consisting of three concentric cylindrical regions of different thermal properties which simulated the aquifer, the flooded region and the unflooded portion of the original hydrocarbon region. Tomme, et al. made a mathematical study of vertical fractures. The object of this investigation was to study the effect of highly permeable and impermeable lenses in the vicinity of the wellbore on the pressure depletion history of the well. Steady- state data were obtained for both conductive and nonconductive lenses that completely penetrated the formation. The lenses were symmetrically located at various distances from the wellbore. The unsteady-state data were obtained on seven thermal models. EXPERIMENTAL EQUIPMENT AND PROCEDURE STEADY-STATE DATA The steady-state data were obtained from an electrical resistivity model 30 in. in diameter and approximately 1 1/2 in. deep. The outside of the model was lined with a 30-in. diameter copper strip, which served as the outer boundary of the reservoir. The bottom was covered with a sheet of plexiglass so that it would be nonconductive. The model was filled with a slightly saline solution. The well size was varied from an 0.064-in. diameter copper wire to a 10-in. diameter copper cylinder. Readings were taken with an impedance bridge using AC current to prevent polarization at the contacts. Copper and wax lenses were used to represent infinitely conductive and nonconductive lenses, respectively. The resistance was first measured for each well diameter with no lenses in the reservoir. Then the conductive and nonconductive lenses were spaced symmetrically at various distances from the well and the resistance read from each lens location. The diameters of the conductive lenses were 3, 1.022 and 0.624 in., and those of the nonconductive lenses were 3, 2.25 and 1.563 in. SPEJ P. 285ˆ


2017 ◽  
Vol 121 (13) ◽  
pp. 134503 ◽  
Author(s):  
S. L. Li ◽  
Q. Y. Zhang ◽  
C. Y. Ma ◽  
C. Zhang ◽  
Z. Yi ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3385 ◽  
Author(s):  
Abdulrauf R. Adebayo ◽  
Abubakar Isah ◽  
Mohamed Mahmoud ◽  
Dhafer Al-Shehri

Laboratory measurements of capillary pressure (Pc) and the electrical resistivity index (RI) of reservoir rocks are used to calibrate well logging tools and to determine reservoir fluid distribution. Significant studies on the methods and factors affecting these measurements in rocks containing oil, gas, and water are adequately reported in the literature. However, with the advent of chemical enhanced oil recovery (EOR) methods, surfactants are mixed with injection fluids to generate foam to enhance the gas injection process. Foam is a complex and non-Newtonian fluid whose behavior in porous media is different from conventional reservoir fluids. As a result, the effect of foam on Pc and the reliability of using known rock models such as the Archie equation to fit experimental resistivity data in rocks containing foam are yet to be ascertained. In this study, we investigated the effect of foam on the behavior of both Pc and RI curves in sandstone and carbonate rocks using both porous plate and two-pole resistivity methods at ambient temperature. Our results consistently showed that for a given water saturation (Sw), the RI of a rock increases in the presence of foam than without foam. We found that, below a critical Sw, the resistivity of a rock containing foam continues to rise rapidly. We argue, based on knowledge of foam behavior in porous media, that this critical Sw represents the regime where the foam texture begins to become finer, and it is dependent on the properties of the rock and the foam. Nonetheless, the Archie model fits the experimental data of the rocks but with resulting saturation exponents that are higher than conventional gas–water rock systems. The degree of variation in the saturation exponents between the two fluid systems also depends on the rock and fluid properties. A theory is presented to explain this phenomenon. We also found that foam affects the saturation exponent in a similar way as oil-wet rocks in the sense that they decrease the cross-sectional area of water available in the pores for current flow. Foam appears to have competing and opposite effects caused by the presence of clay, micropores, and conducting minerals, which tend to lower the saturation exponent at low Sw. Finally, the Pc curve is consistently lower in foam than without foam for the same Sw.


SIMULATION ◽  
2019 ◽  
pp. 003754971985713 ◽  
Author(s):  
Zhenzihao Zhang ◽  
Turgay Ertekin

This study developed a data-driven forecasting tool that predicts petrophysical properties from rate-transient data. Traditional estimations of petrophysical properties, such as relative permeability (RP) and capillary pressure (CP), strongly rely on coring and laboratory measurements. Coring and laboratory measurements are typically conducted only in a small fraction of wells. To contend with this constraint, in this study, we develop artificial neural network (ANN)-based tools that predict the three-phase RP relationship, CP relationship, and formation permeability in the horizontal and vertical directions using the production rate and pressure data for black-oil reservoirs. Petrophysical properties are related to rate-transient data as they govern the fluid flow in oil/gas reservoirs. An ANN has been proven capable of mimicking any functional relationship with a finite number of discontinuities. To generate an ANN representing the functional relationship between rate-transient data and petrophysical properties, an ANN structure pool is first generated and trained. Cases covering a wide spectrum of properties are then generated and put into training. Training of ANNs in the pool and comparisons among their performance yield the desired ANN structure that performs the most effectively among the ANNs in the pool. The developed tool is validated with blind tests and a synthetic field case. Reasonable predictions for the field cases are obtained. Within a fraction of second, the developed ANNs infer accurate characteristics of RP and CP for three phases as well as residual saturation, critical gas saturation, connate water saturation, and horizontal permeability with a small margin of error. The predicted RP and CP relationship can be generated and applied in history matching and reservoir modeling. Moreover, this tool can spare coring expenses and prolonged experiments in most of the field analysis. The developed ANNs predict the characteristics of three-phase RP and CP data, connate water saturation, residual oil saturation, and critical gas saturation using rate-transient data. For cases fulfilling the requirement of the tool, the proposed technique improves reservoir description while reducing expenses and time associated with coring and laboratory experiments at the same time.


Sign in / Sign up

Export Citation Format

Share Document