scholarly journals The Dependence of Electrical Resistivity-Saturation Relationships on Multiphase Flow Instability

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zoulin Liu ◽  
Stephen M. J. Moysey

We investigate the relationship between apparent electrical resistivity and water saturation during unstable multiphase flow. We conducted experiments in a thin, two-dimensional tank packed with glass beads, where Nigrosine dyed water was injected uniformly along one edge to displace mineral oil. The resulting patterns of fluid saturation in the tank were captured on video using the light transmission method, while the apparent resistivity of the tank was continuously measured. Different experiments were performed by varying the water application rate and orientation of the tank to control the generalized Bond number, which describes the balance between viscous, capillary, and gravity forces that affect flow instability. We observed the resistivity index to gradually decrease as water saturation increases in the tank, but sharp drops occurred as individual fingers bridged the tank. The magnitude of this effect decreased as the displacement became increasingly unstable until a smooth transition occurred for highly unstable flows. By analyzing the dynamic data using Archie’s law, we found that the apparent saturation exponent increases linearly between approximately 1 and 2 as a function of generalized Bond number, after which it remained constant for unstable flows with a generalized Bond number less than −0.106.

2018 ◽  
Vol 22 (4) ◽  
pp. 2487-2509 ◽  
Author(s):  
Ashley R. Pales ◽  
Biting Li ◽  
Heather M. Clifford ◽  
Shyla Kupis ◽  
Nimisha Edayilam ◽  
...  

Abstract. The vadose zone is a highly interactive heterogeneous system through which water enters the subsurface system by infiltration. This paper details the effects of simulated plant exudate and soil component solutions upon unstable flow patterns in a porous medium (ASTM silica sand; US Silica, Ottawa, IL, USA) through the use of two-dimensional tank light transmission method (LTM). The contact angle (θ) and surface tension (γ) of two simulated plant exudate solutions (i.e., oxalate and citrate) and two soil component solutions (i.e., tannic acid and Suwannee River natural organic matter, SRNOM) were analyzed to determine the liquid–gas and liquid–solid interface characteristics of each. To determine if the unstable flow formations were dependent on the type and concentration of the simulated plant exudates and soil components, the analysis of the effects of the simulated plant exudate and soil component solutions were compared to a control solution (Hoagland nutrient solution with 0.01 M NaCl). Fingering flow patterns, vertical and horizontal water saturation profiles, water saturation at the fingertips, finger dimensions and velocity, and number of fingers were obtained using the light transmission method. Significant differences in the interface properties indicated a decrease between the control and the plant exudate and soil component solutions tested; specifically, the control (θ= 64.5∘ and γ= 75.75 mN m−1) samples exhibited a higher contact angle and surface tension than the low concentration of citrate (θ= 52.6∘ and γ= 70.8 mN m−1). Wetting front instability and fingering flow phenomena were reported in all infiltration experiments. The results showed that the plant exudates and soil components influenced the soil infiltration as differences in finger geometries, velocities, and water saturation profiles were detected when compared to the control. Among the tested solutions and concentrations of soil components, the largest finger width (10.19 cm) was generated by the lowest tannic acid solution concentration (0.1 mg L−1), and the lowest finger width (6.00 cm) was induced by the highest SRNOM concentration (10 mg L−1). Similarly, for the plant exudate solutions, the largest finger width (8.36 cm) was generated by the lowest oxalate solution concentration (0.1 mg L−1), and the lowest finger width (6.63 cm) was induced by the lowest citrate concentration (0.1 mg L−1). The control solution produced fingers with average width of 8.30 cm. Additionally, the wettability of the medium for the citrate, oxalate, and SRNOM solutions increased with an increase in concentration. Our research demonstrates that the plant exudates and soil components which are biochemical compounds produced and released in soil are capable of influencing the process of infiltration in soils. The results of this research also indicate that soil wettability, expressed as (cos θ)1∕2, should be included in the scaling of the finger dimension, i.e., finger width, when using the Miller and Miller (1956) scaling theory for the scaling of flow in porous media.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. E57-E73 ◽  
Author(s):  
Jesús M. Salazar ◽  
Carlos Torres-Verdín

Some laboratory and qualitative studies have documented the influence of water-based mud(WBM)-filtrate invasion on borehole resistivity measurements. Negligible work, however, has been devoted to studying the effects of oil-based mud(OBM)-filtrate invasion on well logs and the corresponding impact on the estimation of petrophysical properties. We quantitatively compare the effects of WBM- and OBM-filtrate invasion on borehole resistivity measurements. We simulate the process of mud-filtrate invasion into a porous and permeable rock formation assuming 1D radial distributions of fluid saturation and fluid properties while other petrophysical properties remain constant. To simulate the process of mud-filtrate invasion, we calculate a time-dependent flow rate of OBM-filtrate invasion by adapting the available formulation of the physics of WBM-filtrate invasion. This approach includes the dynamically coupled effects of mud-cake growth and multiphase filtrate invasion. Simulations are performed with a commercial adaptive-implicit compositional formulation that enables the quantification of effects caused by additional components of mud-filtrate and native fluids. The formation under analysis is 100% water saturated (base case) andis invaded with a single-component OBM. Subsequently, we perform simulations of WBM filtrate invading the same formation assuming that it is hydrocarbon bearing, and compare the results to those obtained in the presence of OBM. At the end of this process, we invoke Archie’s equation to calculate the radial distribution of electrical resistivity from the simulated radial distributions of water saturation and salt concentration and compare the effects of invasion on borehole resistivity measurements acquired in the presence of OBM and WBM. Simulations confirm that the flow rate of OBM-filtrate invasion remains controlled by the initial mud-cake permeability and formation petrophysical properties, specifically capillary pressure and relative permeability. Moreover, WBM causes radial lengths of invasion 15%–40% larger than those associated with OBM as observed on the radial distributions of electrical resistivity. It is found also that, in general, flow rates of WBM-filtrate invasion are higher than those of OBM-filtrate invasion caused by viscosity contrasts between OBM filtrate and native fluids, which slow down the process of invasion. Such a conclusion is validated by the marginal variability of array-induction resistivity measurements observed in simulations of OBM invasion compared with those of WBM invasion.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1580-1591 ◽  
Author(s):  
G. Michael Hoversten ◽  
Roland Gritto ◽  
John Washbourne ◽  
Tom Daley

This paper presents a method for combining seismic and electromagnetic (EM) measurements to predict changes in water saturation, pressure, and CO2 gas/oil ratio in a reservoir undergoing CO2 flood. Crosswell seismic and EM data sets taken before and during CO2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO2 injection pilot study. A rock‐properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock‐properties model are found by an L1‐norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and electrical conductivity. The rock‐properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear‐wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO2/oil ratio. Resulting images of the CO2/oil ratio show CO2‐rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO2. The images produced by this process are better correlated to the location and amount of injected CO2 than are any of the individual images of change in geophysical parameters.


2006 ◽  
Vol 3 (4) ◽  
pp. 2595-2620 ◽  
Author(s):  
F. Rezanezhad ◽  
H.-J. Vogel ◽  
K. Roth

Abstract. Water infiltration into coarse textured dry porous media becomes instable depending on flow conditions characterized through dimensionless quantities, i.e. the Bond number and the Capillary number. Instable infiltration fronts break into flow fingers which we investigate experimentally using Hele-Shaw cells. We further developed a light transmission method to measure the dynamics of water within flow fingers in great detail with high spatial and temporal resolution. The method was calibrated using x-ray absorption and the measured light transmission was corrected for scattering effects through deconvolution with a point spread function. Additionally we applied a dye tracer to visualize the velocity field within flow fingers. We analyzed the dynamics of water within the finger tips, along the finger core behind the tip, and within the fringe of the fingers during radial growth. Our results confirm previous findings of saturation overshoot in the finger tips and revealed a saturation minimum behind the tip as a new feature. The finger development was characterized by a gradual increase in water content within the core of the finger behind this minimum and a gradual widening of the fingers to a quasi-stable state which evolves on time scales that are orders of magnitudes longer than those of fingers' evolution. In this state, a sharp separation into a core with fast convective flow and a fringe with exceedingly slow flow was detected. All observed phenomena could by consistently explained based on the hysteretic behavior of the soil- water characteristic and on the positive pressure induced at the finger tip by the high flow velocity.


Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. E185-E191 ◽  
Author(s):  
M. Kavian ◽  
E. C. Slob ◽  
W. A. Mulder

Macroscopic measurements of electrical resistivity require frequency-dependent effective models that honor the microscopic effects observable in macroscopic measurements. Effective models based on microscopic physics exist alongside with empirical models. We adopted an empirical model approach to modify an existing physical model. This provided a description of electrical resistivity as a function of not only frequency, but also water saturation. We performed two-electrode laboratory measurements of the complex resistivity on a number of fine and medium-grained unconsolidated sand packs saturated with water of three different salinities. For frequencies between 0.1 and 1 MHz, the data were fitted with the new model and compared to fits with Archie’s law. Our model described the relaxation times and DC resistivity values as negative exponential functions with increasing water saturation. All data could be accurately described as a function of frequency and water saturation with nine parameters.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wu-Nan Tsai ◽  
Chien-Chih Chen ◽  
Chih-Wen Chiang ◽  
Pei-Yuan Chen ◽  
Chih-Yu Kuo ◽  
...  

Water saturation in the bedrock or colluvium is highly related to most landslide hazards, and rainfall is likely a crucial factor. The dynamic processes of onsite rock/soil mechanics could be revealed via monitoring using the electrical resistivity tomography (ERT) technique and Archie’s law. This study aims to investigate water saturation changes over time using time-lapse ERT images, providing a powerful method for monitoring landslide events. A fully automatic remote resistivity monitoring system was deployed to acquire hourly electrical resistivity data using a nontraditional hybrid array in the Lantai area of Yilan Taiping Mountain in Northeast Taiwan from 2019 to 2021. Six subzones in borehole ERT images were examined for the temporal and spatial resistivity variations, as well as possible pathways of the groundwater. Two representative cases of inverted electrical resistivity images varying with precipitation may be correlated with water saturation changes in the studied hillslope, implying the process of rainfall infiltration. Layers with decreased and increased electrical resistivity are also observed before sliding events. Accordingly, we suggest that high-frequency time-lapse ERT monitoring could play a crucial role in landslide early warning.


Geophysics ◽  
2012 ◽  
Vol 77 (1) ◽  
pp. E9-E20 ◽  
Author(s):  
Alireza Shahin ◽  
Kerry Key ◽  
Paul Stoffa ◽  
Robert Tatham

The controlled-source electromagnetic (CSEM) method has been successfully applied to petroleum exploration; however, less effort has been made to highlight the applicability of this technique for reservoir monitoring. This work appraises the ability of time-lapse CSEM data to detect the changes in fluid saturation during water flooding into an oil reservoir. We simulated a poorly consolidated shaly sandstone reservoir based on a prograding near-shore depositional environment. Starting with an effective porosity model simulated by Gaussian geostatistics, dispersed clay and dual water models were efficiently combined with other well-known theoretical and experimental petrophysical correlations to consistently simulate reservoir properties. The constructed reservoir model was subjected to numerical simulation of multiphase fluid flow to predict the spatial distributions of fluid pressure and saturation. A geologically consistent rock physics model and a modified Archie’s equation for shaly sandstones were then used to simulate the electrical resistivity, showing up to 60% decreases in electrical resistivity due to changes in water saturation during 10 years of production. Time-lapse CSEM data were simulated at three production time steps (zero, five, and ten years) using a 2.5D parallel adaptive finite element algorithm. Analysis of the time-lapse signal in the simulated multicomponent and multifrequency data set demonstrates that a detectable time-lapse signal after five years and a strong time-lapse signal after ten years of water flooding are attainable using current CSEM technology.


2017 ◽  
Author(s):  
Ashley R. Pales ◽  
Biting Li ◽  
Heather M. Clifford ◽  
Shyla Kupis ◽  
Nimisha Edayilam ◽  
...  

Abstract. The vadose zone is a highly interactive heterogeneous system through which water enters into the subsurface system by infiltration. This paper details the effects of simulated plant exudate and soil component solutions upon unstable flow patterns in a porous media (ASTM silica sand; US Silica, Ottawa, IL, USA) through the use of two-dimensional (2D) tank light transmission method (LTM). The contact angle and surface tension of two simulated plant exudate solutions (i.e. oxalate, and citrate) and two soil component solutions (i.e. tannic acid, and Suwannee River Natural Organic Matter) were analyzed to determine the liquid-gas and liquid-solid interface characteristics of each. To determine if the unstable flow formations were dependent on the type and concentration of the simulated plant exudates and soil components, the analysis of the effects of the simulated plant exudate and soil component solutions were compared to a control rainwater solution. The differences in the fingering flow were quantified with the finger geometries, the velocity of finger propagation, the vertical and horizontal water saturation profiles, and the water saturation at the fingertips. Significant differences in the interface processes indicated a decrease between the control and the plant exudate and soil component solutions tested; specifically, the control at 64.5 θ and 75.75 Nm/m, to the low concentration of citrate at 52.6 θ and 70.8 Nm/m. The changes in finger geometries and velocity of propagation between the control solution and the simulated plant exudate and soil component solutions further demonstrate that the plant exudates increased the wettability and mobility of the solutions during the infiltration process in unsaturated porous media.


Sign in / Sign up

Export Citation Format

Share Document