scholarly journals 3D reflection seismic imaging for open-pit mine planning and deep exploration in the Kevitsa Ni-Cu-PGE deposit, northern Finland

Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. WC95-WC108 ◽  
Author(s):  
Alireza Malehmir ◽  
Christopher Juhlin ◽  
Chris Wijns ◽  
Milovan Urosevic ◽  
Petri Valasti ◽  
...  

A 3D reflection seismic survey was conducted over an area of about [Formula: see text] at the Kevitsa Ni-Cu-PGE (platinum group elements) orebody, northern Finland, where open-pit mining started in mid-2012. The principal objective of the survey was to image major fault and fracture zones at depth that may have an impact on the mine stability and safety. Mine planning would then take into account the geometry of these zones at Kevitsa. Processing results, using conventional prestack DMO and poststack migration methods, show gently dipping and steeply dipping reflections from depths of approximately 2 km to as shallow as 150–200 m. Many of the reflections are interpreted to originate from either fault systems or internal magmatic layering within the Kevitsa main intrusion. Further correlation between the surface seismic data and VSP data suggests that numerous faults are present in the imaged volume based upon time shifts or phase changes along horizontal to gently dipping reflections. Some of these faults cross the planned open-pit mine at depths of about 300–500 m, and are therefore critical for geotechnical planning. In terms of in-pit and near-mine exploration, the magmatic layering internal to the intrusion controls the distribution of the bulk of economic mineralization. The ability to image this magmatic layering could therefore guide future drilling, particularly by constraining the presumed lateral extents of the resource area. Exploration also will target discrete reflectors that potentially represent higher-grade sulfide mineralization.

Author(s):  
Mohanad F Jwaid, Husam K Salih Juboori

In the Recent times, various technological enhancements in the field of artificial intelligence and big data has been noticed. This advancements coupled with the evolution of the 5G communication and Internet of Things technologies, has helped in the development in the domain of smart mine construction. The development of unmanned vehicles with enhanced and smart scheduling system for open-pit mine transportation is one such much needed application. Traditional open-pit mining systems, which often cause vehicle delays and congestion, are controlled by human authority. The number of sensors has been used to operate unmanned cars in an open-pit mine. The sensors haves been used to prove the real-time data in large quantity. Using this data, we analyses and create an improved transportation scheduling mechanism so as to optimize the paths for the vehicles. Considering the huge amount the data received and aggregated through various sensors or sources like, the GPS data of the unmanned vehicle, the equipment information, an intelligent, and multi-target, open-pit mine unmanned vehicle schedules model was developed. It is also matched with real open-pit mine product to reduce transport costs, overall unmanned vehicle wait times and fluctuation in ore quality. To resolve the issue of scheduling the transportation, we prefer to use algorithms based on artificial intelligence. In addition to four other models we are proposing a decomposition-based restricted genetic dominance (DBCDP-NSGA-II) algorithm, which retains viable and non-facilitating solutions in small areas in order to improve the convergence, distribution and diversity of traditional high-dimensional multi-objective fast-dominated genetic sorting Algorithms (NSGA-II).


2020 ◽  
pp. 55-58
Author(s):  
I. O. Temkin ◽  
◽  
A. V. Myaskov ◽  
S. A. Deryabin ◽  
U. A. Rzazade ◽  
...  

This article discusses modern modeling technologies which open up new capabilities for creating a digital platform for open pit mining management. The specific details of the construction of an intelligent digital platform for the management of transport processes during mineral mining are discussed. A brief overview of the methods and tools for modeling technological processes in open pit mining is given. The stages to be overcome on the path of digital transformation of mines using dynamic 3D models are presented. It is proposed to use software environments of the gaming industry platforms and virtual reality systems as tools for the dynamic 3D modeling of objects. The classes of agents are introduced for the convenience of structuring the tasks to be solved. The basic functional and instrumental elements of the intelligent platform being developed at the present time are given, and also a simplified structure of the technological process control system in an open pit mine, including the prediction module, is presented. The principles of work are described, and the advantages of the specific tool for creating digital 3D models are also discussed. The results obtained in modeling a stage of a transport cycle in an open pit mine are reported. The research was supported by the Russian Science Foundation, Grant No. 19-17-00184.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 108 ◽  
Author(s):  
Nelson Morales ◽  
Sebastián Seguel ◽  
Alejandro Cáceres ◽  
Enrique Jélvez ◽  
Maximiliano Alarcón

Long-term open-pit mine planning is a critical stage of a mining project that seeks to establish the best strategy for extracting mineral resources, based on the assumption of several economic, geological and operational parameters. Conventionally, during this process it is common to use deterministic resource models to estimate in situ ore grades and to assume average values for geometallurgical variables. These assumptions cause risks that may negatively impact on the planned production and finally on the project value. This paper addresses the long-term planning of an open-pit mine considering (i) the incorporation of geometallurgical models given by equiprobable scenarios that allow for the assessing of the spatial variability and the uncertainty of the mineral deposit, and (ii) the use of stochastic integer programming model for risk analysis in direct block scheduling, considering the scenarios simultaneously. The methodology comprises two stages: pit optimization to generate initial ultimate pit limit per scenario and then to define a single ultimate pit based on reliability, and stochastic life-of-mine production scheduling to define block extraction sequences within the reliability ultimate pit to maximize the expected discounted value and minimize the total cost of production objective deviations. To evaluate the effect of the geometallurgical information, both stages consider different optimization strategies that depend on the economic model to be used and the type of processing constraints established in the scheduling. The results show that geometallurgical data with their associated uncertainties can change the decisions regarding pit limits and production schedule and, consequently, to impact the financial outcomes.


2020 ◽  
Author(s):  
Jihyun Moon ◽  
Heejeong Seo ◽  
Hoonyol Lee

<p>Musan mine in North Korea is the largest open-pit iron mine in Asia with the proved reserves of about 2.06 billion tons and more than 9 square kilometers. Open-pit mining is one of the surface mining technique extracting minerals from the surface. Vegetation is rarely distributed at the mining site because the topsoil is removed and the ore is mined directly from the surface. Therefore, it is effective to observe surface displacement at the mining site using Interferometric Synthetic Aperture Radar (InSAR) technology. InSAR coherence detects random surface change that measures the activity or stability of the interferometric phase of InSAR data. High coherence will be maintained on the surface where there is no movement and only surface scattering. On the other hand, the surface where there is a lot of movement and volumetric scattering has low coherence value. Therefore, using 12-days InSAR coherence images from Sentinel-1 satellites, for example, it is possible to analyze how active the open-pit mine is during the 12 days. Sentinel-1A satellite images were acquired from June 11, 2015 to May 24, 2016, followed by Sentine-1B satellite images from September 27, 2016 to April 21, 2019. A total of 102 SAR images were downloaded from European Space Agency (ESA) portal. There is a gap between May 24 and September 27, 2016 due to the transition of the data acquisition plan. Over 100 12-days coherence data were obtained by applying InSAR. Stable spots and target spots were selected through average and standard deviation of the entire coherence time series data. Coherence values include not only the mining activity but also the effects of perpendicular baseline, temporal baseline, and weather. Therefore, NDAI (Normalized Difference Activity Index) was newly defined to remove the noise and only the coherence value due to the influence of the mining activity was extracted. The degree of activities can be observed by the time series coherence and NDAI images. This study needs other references related to mining activities in order to analyze the mining activities in more detail. This method can be applied to other open-pit mine.</p>


2020 ◽  
Vol 194 ◽  
pp. 04043
Author(s):  
Guo Xiaoli ◽  
Yan Jiancheng ◽  
Li Xueliang ◽  
Wen Xin ◽  
Li Xingli

The dumps in the open-pit mining area in the eastern grassland are prone to landslides due to the fragile ecological environment, so it is inevitable to reshape the dump slopes. In order to explore a more scientific method for slope shaping of open-pit mine dump, slope stability analysis were used to compare effect of three types of slope-type (wave-shaped, slope-shaped and step-shaped slope shaping method)in outside dumping site of Baori Hiller open-pit mine. The results show that the slope stability is negatively correlated with the slope angle, and the stability of different shaping slopes is realized as wave-shaped slope (F=2.711)> Slope-shaped slope(F=2.513)>Step-shaped slope(F=1.047), in which the wave type and slope type are all within the safe range, but the step type slope is unstable; in consideration of cost, stability and erosion resistance, it is better to set the slope angle of the dump to 15°.The wave-shaped shaping method of the natural dumping of the excavation field outside the Baori Hiller open-pit mine has the best effect and is worth promoting.


2021 ◽  
Vol 6 (2) ◽  
pp. 142-150
Author(s):  
Fontes MP ◽  
Koppe JC ◽  
Silva Neto JA

Long-term open pit mine planning is a complex process which deals with numerous uncertainties, whether they are economical (commodity price, operational costs, production schedule, discount rate, inflation, among others); geological (grade distribution, density, hardness, etc); or physical constraints (property limits, environmental issues, legislation, etc). In this context, this paper aims to evaluate the effects of the variation of two important variables: commodity price and discount rate, with regard to the economic criterion, represented by the Net Present Value (NPV) of the mining business. Starting from a baseline value of US$ 80/t, the commodity (phosphate rock was used as a case study) price was varied within a 50% range, above and below the baseline value, obtained from historic values from the last 5 years. The discount rate values adopted in the analyses were 6%, 8%, 10%, 12%, 14%, 16%, 18% and 20%. The results showed increases in the market price yielded higher NPV and life of mine values. On the other hand, it was noted that increases in the discount rate can significantly alter the NPV, materially reducing the value of the mining undertaking. It is also worth noting that, in contrast to more robust approaches such as Real Options Theory (ROT), traditional Discounted Cash Flow (DCF) methods, such as NPV, assume variables, such as commodity price, to be fixed, which could either lead to the undervaluation or overvaluation of a project.


Sign in / Sign up

Export Citation Format

Share Document